Электроды для контактной сварки. Уход за электродами

Резаки RX произведенные компанией SINTERLEGHE согласно патента EP2193003 позволяют вам:

Затачивать электроды различной формы наконечника используя один резак

Разделить стружку удаленного материала между верхним и нижним электродом

Снизить затраты на расходные материалы, благодаря высокой прочности и твердости материала лезвий

Можете использовать разработки SINTERLEGHE для работы с другими производителями заточных машин (см. картинку)

В результате испытаний для подтверждения патента EP2193003 для резаков RX были достигнуты следующие результаты:

Снижение затрат на закупку электродов на 50%

Снижение кол-ва сварочных брызг

Улучшение качества и вида сварочных точек

Снижение кол-ва остановок линий для замены электродов

Снижение кол-ва используемых моделей резаков

Снижение затрат на резаки

Снижение потребления электроэнергии

РАЗМЕРЫ ЭЛЕТРОДОВ ПОСЛЕ ЗАТОЧКИ


Резак RX SINTERLEGHE (патент EP 2193003) может применятся при использованиизаточных машин других производителей:

Germany: Lutz - Brauer - AEG - Wedo

Italy: Sinterleghe - Gem - Mi-Ba

France: AMDP - Exrod

USA: Semtorq, Stillwater

Japan: Kyokuton - Obara

Параметр

RX SINTERLEGHE патент 2193003

Резаки с одним лезвием

Удаление материала электрода, при усили сжатия электродов 120даН

0,037 мм/сек

0,08 мм/сек

Количество циклов для заточки электродов до их замены

Время заточки

Количество сварных точек за весь срок службы электродов

Срок службы резка для заточки

60 000 (12 мес)

10 000 (3 мес)

Время для замены электродов за 200 дней

Экономия времени

RX SINTERLEGHE патент 2193003

Резаки с одним лезвием

Стоимость двух электродов

Стоимость электродов для сварки 10 000 точек

Затраты в год на покупку новых электродов (2 000 000 точек/ 200 раб. дней)

Ежегодные затраты на держатель лезвия

Ежегодные затраты на лезвие

(4штх50евро) = 200евро

Ежегодные затраты на резак

Ежегодные затраты на обслуживание и замену резаков

12 евро (4 лез х 3 евро)

Общие затраты на покупку электрдов и замену лезвий или резаков

общие затраты на каждую сварочную машину за 8 лет

Затраты на 10 сварочных машин

Экономия

Высокая стойкость электрода и надлежащее качество сварного точечного соединения невозможны без правильного ухода за электродами. От 3 до 10% рабочего времени сварщика уходит на обслуживание электрода. Правильный уход за электродами позволяет одной парой электродов выполнить 30…100 тыс. сварных точек, при этом расход электродного сплава составляет всего лишь 5…20 г на тысячу сваренных точек.

Уход за электродами точечных машин состоит из двух операций - зачистки электродов непосредственно на машине и заправки снятого электрода на токарном или специальном станке.

Периодичность зачистки зависит главным образом от свариваемого материала. При сварке стали с хорошо подготовленной поверхностью в одних случаях можно обходиться без зачистки, в других требующаяся зачистка выполняется после сварки нескольких сот точек. При сварке алюминиевых сплавов требуется зачистка электродов через 30…60 точек, иначе начинается прилипание электродного металла к свариваемому, что нарушает процесс сварки, а также ухудшает коррозионную стойкость сварного соединения. Это же явление наблюдается и при сварке других материалов с пониженной температурой плавления, таких, например, как магний.

Зачистку следует осуществлять таким образом, чтобы, не снимая большого количества металла, получить чистую поверхность электрода. Для упрощения этой операции и облегчения условий труда при зачистке электродов применяются специальные приспособления.

Наиболее простое приспособление показано на рис. 1. Оно представляет собой лопаточку с двусторонними углублениями, в которые вкладывается наждачная бумага. Лопаточка вставляется между сжатыми электродами, и при поворачивании вокруг оси электродов зачищает их контактные поверхности.

Рис. 1. Приспособление для ручной зачистки электродов:

1 - шкурка; 2 - сферическая выемка.

Вместо такой лопаточки можно пользоваться стальной пластиной для зачистки электродов с плоской контактной поверхностью или куском резины - для зачистки электродов со сферической рабочей поверхностью. Электроды с плоской контактной поверхностью зачищаются одновременно или поочередно, со сферической - одновременно, при небольшом сжимающем усилии. После зачистки следы абразивной пыли удаляются сухой ветошью.

Стремление механизировать процесс зачистки контактной поверхности электродов привело к созданию приспособлений с электрическим или пневматическим приводом. На рис. 2 показана пневматическая машинка для зачистки электродов.

Рис. 2. Угловая пневматическая машинка для зачистки электродов

Необходимость в зачистке контактной поверхности определяется визуально, по состоянию поверхности свариваемого изделия, но известны попытки определения момента зачистки при помощи специальных приспособлений.

С помощью программного управления осуществляются не только установка свариваемого узла, сварочного тока и времени сварки, но и подается сигнал о необходимости зачистки электродов.

Предлагается момент зачистки электродов определять по сравнению яркости светового луча, отраженного от контактной поверхности электрода, с яркостью луча, отраженного от поверхности эталона. Этот способ позволяет также прекращать процесс сварки под действием сигнала, величина которого возрастает при загрязнении рабочей поверхности электрода.

Заправка рабочей части изношенного электрода с целью восстановления первоначальной формы может производиться несколькими способами. Наименее качественным является заправка мелким напильником. Рекомендуется для указанных целей применять специальные заправники. Пример ручного заправника приводится на рис. 3.

Рис. 3. Ручной заправник электродов:

1 - корпус; 2 - винты. 3 - резцы; 4 - ручка.

Также рекомендуется применение специальных пневматических заправников, оснащенных торцовой фрезой, профиль режущей части которой соответствует профилю рабочей части электрода. Специальная фреза вставляется в патрон обычной ручной дрели и позволяет одновременно обрабатывать коническую и плоскую поверхность рабочей части электрода.

Хорошим способом заправки электродов является заправка на токарных станках с проверкой размеров по шаблону.

При большом количестве заправляемых электродов целесообразно применять специальные станки типа.

Для быстрой смены электродов без повреждения рекомендуется применять электроды с лысками под ключ или пользоваться специальными съемниками.

Простейший съемник (рис. 4) представляет собой винтовой зажим специальной конструкции.

Рис. 4. Съемник простейшей конструкции:

1 - корпус; 2 - плашки; 3 - зажимной винт.

Восстановление изношенных электродов для точечной сварки ранее не практиковалось. За последнее время разработана технологию восстановления электродов точечных сварочных машин дуговой наплавкой. Твердость, электропроводность и стойкость восстановленных электродов соответствуют свойствам электродов, изготовленных из прутков. Применение метода восстановления электрода наплавкой только для одной многоточечной машины позволяет экономить до 500 кг бронзы в год.

Электроды (ролики) – это инструмент, который осуществляет непосредственный контакт машины со свариваемыми деталями. Электроды в процессе сварки выполняют три основные задачи:
- сжимают детали;
- подводят сварочный ток;
- отводят теплоту, выделяющуюся в процессе сварки на участке электрод – электрод.
Непосредственно от формы рабочей поверхности электродов, контактирующей с деталями, зависит качество получаемых сварных соединений. Износ рабочей поверхности связанное с этим увеличение площади контакта электрод – деталь приводит к уменьшению плотности тока и давления в зоне сварки, а следовательно, к изменению ранее получаемых параметров литой зоны и качества соединений.
Увеличение рабочей поверхности плоского электрода при его износе в большей степени уменьшают размеры литой зоны при сварке пластичного металла, чем при сварке высокопрочного металла (Рис.1а). Износ сферической рабочей поверхности электрода, установленного со стороны тонкой детали, уменьшает ее проплавление (Рис. 1б,в).
Основные требования, предъявляемые к электродам:
- высокая электропроводность сварки
- сохранение формы рабочей поверхности в процессе сварки заданного числа точек или метров роликового шва.
При точечной и роликовой сварке электроды нагреваются до высоких температур в результате выделения теплоты непосредственно в электродах и передачи ее от свариваемых деталей.

Рис. 1. Зависимость размеров литой зоны от изменений рабочей поверхности электродов:
а - толщина 1+1 мм: 1 - сталь Х18Н10Т; 2 - сталь ВНС2
б,в - при износе сферической поверхности электрода со стороны тонкой детали

Степень нагрева электродов зависит от применяемого режима сварки и толщины свариваемых деталей. Например, при точечной сварке коррозионностойкой стали с увеличением толщины деталей от 0,8+0,8 до 3+3 мм отношение теплоты, выделяющейся в электродах, к общей теплоте, выделяющейся при сварке, увеличиваются от 18 до 40%. По результатам непосредственных измерений температура рабочей поверхности электродов при сварке единичными точками образцов толщиной 1,5-2 мм составляет: 530°С для стали ЗОХГСА, 520°С для стали Х18Н9Т, 465°С для титана ОТ4 и 420°С для сплава ВЖ98. При темпе (скорости) сварки 45 точек в минуту температура повысилась и составила соответственно: 660, 640, 610 и 580°С.

Табл. 1
Свойства металлов для электродов и роликов

Марка металла
электродов и
роликов
Удельное
электросопротивление,
Ом мм 2 /м
Максимальная
электропроводность,
% от электропроводности
меди
Минимальная твердость
по Бринелю,
кгс/мм 2
Температура
разупрочнения,
о С

Материалы для сварки
Кармиевая бронза
Бр.Кд-1 (МК)
0,0219 85 110 300 Латунь, бронза
Хромокармиевая бронза
Бр.ХКд-0,5-0,3
0,0219 85 110 370 Латунь, бронза, низколегированные стали, титан*
Хромовая бронза
Бр.Х
0,023 80 120 370 Латунь, бронза, низколегированные стали, титан*
Хромоциркониевая бронза
Бр.ХЦр-0,6-0,05
0,023 80 140 500 Низколегированные стали, титан
Сплав
Мц4
0,025 75 110 380 Коррозионностойкие, жаропрочные стали и сплавы, титан*
Бронза
Бр.НБТ
0,0385 50
170
510
Коррозионностойкие, жаропрочные стали и сплавы, титан
* Для металла толщиной 0,6 мм и менее

Для электродов и роликов используют специальные медные сплавы, обладающие высокой жаропрочностью и электропроводностью (Табл.1). Наилучшим металлом для электродов и роликов, применяемых при сварке коррозионностойких, жаропрочных сталей и сплавов и титана, является бронза Бр.НБТ, которую выпускают в виде термически обработанных катаных плит и литых цилиндрических заготовок. Из бронзы Бр.НБТ особенно целесообразно изготовлять фигурные электроды, т.к. для обеспечения необходимой твердости не требуется нагартовки, которая необходима для кадмиевой меди, сплава Мц5Б и бронзы Бр.Х.
Не рекомендуется использовать электроды и ролики из бронзы Бр.НБТ для сварки низколегированных сталей, особенно без наружного охлаждения, из-за возможного налипания меди на поверхность деталей в месте контакта с электродами.
Наиболее универсальным является сплав Мц5Б, его можно использовать для электродов и роликов при сварке всех рассматриваемых металлов. Однако сплав Мц5Б несколько сложен в изготовлении и термомеханической обработке, поэтому не получил широкого распространения. Кроме того, его стойкость при сварке коррозионностойких и жаропрочных сталей и сплавов значительно ниже, чем у бронзы Бр.НБТ. При точечной сварке коррозионностойких сталей толщиной 1,5+1,5 мм стойкость электродов из сплава Бр.НБТ составляет в среднем 7-8 тыс. точек, из бронзы Бр.Х – 2-3 тыс. точек, а при роликовой сварке – соответственно 350 и 90 м шва.
Наибольшее применение для точечной сварки получили электроды с плоской и сферической поверхностью и ролики с цилиндрической и сферической рабочей поверхностью. Размеры рабочей поверхности электродов выбирают в зависимости от толщины свариваемых деталей; для большинства металлов форма поверхности может быть плоской (цилиндрической для роликов) или сферической (Табл.2).

Табл. 2
Размеры электродов и роликов

Толщина
тонкого листа,
мм

Электроды


Ролики


D d эл R эл S f R эл
0.3
12
3.0
15-25
6.0
3.0
15-25
0.5
12
4.0
25-50
6.0
4.0 25-30
0.8
12
5.0
50-75
10.0
5.0
50-75
1.0 12
5.0
75-100
10.0
5.0
75-100
1.2 16
6.0
75-100
12.0
6.0
75-100
1.5 16
7.0
100-150
12.0
7.0
100-150
2.0
20
8.0
100-150
15.0
8.0
100-150
2.5
20
9.0
150-200
18.0
10.0
150-200
3.0
25
10.0
150-200
20.0
10.0
150-200
Примечание: Размеры D и S минимально рекомендуемые

Электроды со сферической рабочей поверхностью лучше отводят теплоту, имеют большую стойкость и менее чувствительны к перекосам осей электродов при их установке, чем электроды с плоской рабочей поверхностью, поэтому их используют при сварке на подвесных машинах (клещах).
При сварке электродами со сферической рабочей поверхностью изменение F св в большей степени влияет на размеры литой зоны, чем при использовании электродов с плоской поверхностью, особенно при сварке пластичных металлов. Однако при уменьшении I св и t св от заданного значения d и А понижаются меньше при сварке электродами со сферической поверхностью, чем при сварке электродами с плоской поверхностью.
При использовании сферических электродов площадь контакта электрод-деталь в начале сварки значительно меньше, чем в конце. Это приводит к тому, что на машинах с пологой нагрузочной характеристикой (машины с большим Z м , клещи с кабелем) плотность тока в контакте электрод-деталь при включении может быть очень высокой, что способствует снижению стойкости электродов. Поэтому целесообразно применять плавное нарастание i св , которое обеспечивает практически постоянную плотность тока в контакте.
При точечной и роликовой сварке медных и титановых сплавов предпочтительно применять электроды и ролики со сферической рабочей поверхностью. В отдельных случаях использование только сферической поверхности обеспечивает требуемое качество соединений, например при сварке деталей неравной толщины.
Электроды в большинстве случаев соединяются с электрододержателями с помощью конусной посадочной части. По ГОСТ 14111-90 на прямые электроды конусность посадочной части принята 1:10 для электродов диаметром D ≤25 мм и 1:5 для электродов D >25 мм. В зависимости от диаметра электрода практически допустимое усилие сжатия F эл=(4-5)D2 кгс .
На практике для сварки различных деталей и узлов применяются разнообразные электроды и электрододержатели. Для получения точечных соединений стабильного качества лучше применять фигурные электрододержатели, чем фигурные электроды. Фигурные электрододержатели имеют больший срок службы, а также имеют лучшие условия для охлаждения электродов, что повышает их стойкость.



Рис. 2. Электроды различных конструкций

На рис. 2 показаны некоторые электроды специального назначения. Сварку Т-образного профиля с листом выполняют с использованием нижнего электрода с прорезью под вертикальную стенку профиля (рис.2а,I). При сварке деталей неравной толщины, когда недопустима глубокая вмятина на поверхности тонкой детали, может быть применен электрод 1 со стальным кольцом 2 на рабочей поверхности, стабилизирующим площадь контакта электрод-деталь (рис. 2а,II). Наличие медной фольги 3 между электродом и деталью исключает поджоги в контакте кольцо - деталь. Для герметизации тонкостенных трубок 3 из коррозионностойкой стали с помощью точечной сварки используют электрод 1 с продолговатой рабочей поверхностью (рис. 2 а,III). Стальная насадка 2 концентрирует ток и позволяет производить смятие трубок без опасности повреждения рабочей поверхности. На рабочей поверхности электродов 1 могут быть закреплены стальные трубки 2, стабилизирующие контакт электрод-деталь и уменьшающие износ электродов (рис. 2а, IV, V).
При точечной сварке оси электродов должны быть перпендикулярны поверхностям свариваемых деталей. Поэтому детали, имеющие уклоны (плавно изменяющуюся толщину), целесообразно сваривать с использованием самоустанавливающегося поворотного электрода со сферической опорой (рис. 2б).
Для точечной сварки деталей с большим отношением толщин иногда со стороны тонкой детали устанавливают электрод (рис. 2в, I), рабочая часть которого выполнена из металла с низкой теплоэлектропроводностью (вольфрама, молибдена и т. п.). Такой электрод состоит из медного корпуса 1 и вставки 2, припаянной в корпусе. Рабочую часть электрода 3 иногда выполняют сменной и закрепляют на корпусе электрода 1 накидной гайкой 2 (рис.2в,II). Электрод обеспечивает быструю замену рабочей части при ее износе или при необходимости – перестановку вставки с другой формой рабочей поверхности.
Для роликовой сварки применяют ролики составной конструкции, у которых основание 1 из медного сплава, а припаянная к нему рабочая часть 2 – из вольфрама или молибдена (рис.2в, III). При роликовой сварке швов большой протяженности на деталях малой толщины (0,2-0,5 мм) рабочая поверхность роликов быстро изнашивается, в связи с чем ухудшается качество сварки. В таких случаях ролики имеют канавку, в которой помещена проволока их холоднотянутой меди (рис.3), перематываемая при вращении роликов с одной катушки на другую. Этот способ обеспечивает стабильную форму рабочей поверхности и многократное использование электрода-проволоки при роликовой сварке деталей малой толщины или деталей с покрытием.

Чтобы избежать частой смены электродов, для сварки на одной машине деталей различной толщины могут быть использованы многоэлектродные головки. В головку устанавливают электроды с рабочей поверхностью различной формы. При точечной сварке деталей неравной толщины важно обеспечить стабильную рабочую поверхность электрода со стороны тонкой детали. Для этой цели используют многоэлектродную головку 1; со стороны толстой детали устанавливают ролик 2 (рис.4). При износе рабочей поверхности электрода его заменяют новым, поворачивая головку. Многоэлектродные головки позволяют также без съема электродов со сварочной машины автоматически зачищать электрод, не осуществляющий в данный момент сварку.
Иногда электроды подводят ток к свариваемым деталям но не связаны непосредственно со сварочной машиной. Например необходимо сварить продольным роликовым швом тонкостенные трубы малого диаметра (10-40 мм). Для этого заготовку трубы 1 с медной оправкой 2 помещают между роликами поперечной сварочной машины (рис. 5а). Таким образом могут быть сварены швы достаточно большой длины. Для сварки деталей 1 коробчатой формы используют электрод-шаблон 2, закрепленный на оси 3 для поворота его после сварки первого шва (рис.5б).


Рис. 5. Электроды-оправки, применяемые на роликовых машинах
поперечной сварки:

а - сварка тонкостенной трубы;
б - сварка кожуха;
1- детали; 2 - электроды; 3 - ось.

Стойкость электродов и роликов зависит от условий их охлаждения. Электроды для точечной сварки должны иметь внутреннее водяное охлаждение. Для этого электроды со стороны посадочной части имеют отверстие, в которое вводится трубка, закреп ленная в электрододержателе. Вода поступает по трубке, омывает дно и стенки отверстия и через пространство между внутренними стенками электрода и трубкой проходит в электрододержатель. Конец трубки должен иметь скос под углом 45°, край которого должен отстоять от дна электрода на 2-4 мм. При увеличении этого расстояния образуются воздушные пузыри и ухудшается охлаждение рабочей поверхности электрода.
На стойкость электродов оказывает влияние расстояние от рабочей поверхности до дна охлаждающего канала. При уменьшении этого расстояния повышается стойкость электродов (число точек до переточки), но уменьшается число его возможных пере¬точек до полного износа и тем самым сокращается срок его службы. Анализируя влияние этих двух факторов на затраты электродного металла, а следовательно, и на стоимость электродов установлено, что расстояние от дна до рабочей поверхности должно составлять (0,7 -0,8)D (где D - наружный диаметр электрода). Для усиления интенсивности охлаждения при точечной сварке можно применять дополнительное водяное охлаждение электродов и места сварки. Вода в этом случае подается через отверстия в электродах или отдельно по специальной трубке наружного охлаждения. Иногда применяют внутреннее охлаждение жидкостями с температурой ниже 0°С или сжатым воздухом.
При роликовой сварке чаще применяют наружное охлаждение роликов и места сварки. Однако такой способ охлаждения не при¬годен при сварке закаливающихся сталей. Если при точечной сварке легко осуществить внутреннее охлаждение электродов то при роликовой сварке это достаточно сложная задача.
При эксплуатации электродов и роликов периодически необходимо зачищать и восстанавливать их рабочую поверхность. Электроды с плоской рабочей поверхностью обычно зачищают личным напильником и абразивным полотном, электроды со сферической рабочей поверхностью – с помощью резиновой подушки толщиной 15-20 мм, обернутой абразивным полотном.
Рабочую поверхность электродов чаще всего восстанавливают на токарных станках. Для получения рабочей поверхности правильной формы целесообразно использовать специальные фасонные резцы.

Рассказ об электрододержателях и электродах для точечной сварки мы решили выделить в отдельную статью из-за большого объема материала по этой теме.

Электрододержатели машин точечной сварки

Электрододержатели служат для установки электродов, регулирования расстояния между ними, подвода сварочного тока к электродам и отвода тепла, выделяющегося при сварке. Форма и конструкция электрододержателей определяется формой свариваемого узла. Как правило, электрододержатель представляет собой медную или латунную трубу с конусным отверстием для установки электрода. Это отверстие может быть выполнено по оси электрододержателя, перпендикулярно оси или под углом. Часто одна и та же машина может комплектоваться несколькими вариантами электрододержателей для каждого вида электродов — в зависимости от формы свариваемых деталей. В некоторых машинах малой мощности электрододержатели могут совсем не входить в комплектацию, так как их функции выполняют сварочные хоботы.
В машинах стандартной комплектации чаще всего используются прямые электрододержатели (рис. 1), как наиболее простые. В них могут устанавливаться электроды различной формы. В случае сварки деталей больших размеров с ограниченным доступом к месту сварки целесообразно использовать фигурные электрододержатели с простыми электродами прямой формы. Крепятся они в электрододержателях за счет конусной посадки, штифтов или винтов. Удаление электрода из держателя производят легкими постукиваниями деревянным молотком или специальным экстрактором.

Электроды для точечной сварки

Электроды для точечной сварки служат для сжатия деталей, подвода сварочного тока к деталям и отвода тепла, выделяющегося при сварке. Это один из самых ответственных элементов сварочного контура машины точечной сварки, потому что форма электрода определяет возможность сварки того или иного узла, а его стойкость — качество сварки и продолжительность бесперебойной работы машины. Различают прямые (рис. 4) и фигурные электроды (рис. 5). Некоторые примеры применения прямых электродов приведены в таблице 1. Многие прямые электроды изготавливаются в соответствии с ГОСТ 14111-77 или ОСТ 16.0.801.407-87.

У фигурных электродов ось, проходящая через центр рабочей поверхности, значительно смещена относительно оси посадочной поверхности (конуса). Их применяют для сварки деталей сложной формы и узлов в труднодоступных местах.

Конструкция электродов для точечной сварки

Электрод для точечной сварки (рис. 6) конструктивно состоит из рабочей части (1), средней (цилиндрической) части (2) и посадочной части (3). Внутри тела электрода проходит внутренний канал, в который вводится трубка подачи охлаждающей воды электрододержателя.
Рабочая часть (1) электрода имеет плоскую или сферическую поверхность; диаметр рабочей поверхности d эл или радиус сферы R эл выбирают в зависимости от материала и толщины свариваемых деталей. Угол конуса рабочей части обычно составляет 30°.
Средняя часть (2) обеспечивает прочность электрода и возможность использования экстракторов или иного инструмента для демонтажа электродов. Производители применяют различные методики для расчета размеров электродов. В СССР согласно ОСТ 16.0.801.407-87 были установлены типоразмерные ряды:

D эл = 12, 16, 20, 35, 32, 40 мм

L = 35, 45, 55, 70, 90, 110 мм

В зависимости от максимального усилия сжатия машины:

D эл = (0,4 - 0,6)√F эл (мм).

Где: F эл — максимальное усилие сжатия машины (даН).

Посадочная часть (3) должна иметь конусность для плотной установки в электрододержатель и предотвращения протечек охлаждающей воды. Для электродов диаметром 12-25 мм конусность составляет 1:10, для электродов диаметром 32-40 мм — конусность 1:5. Длина конусной части не менее 1,25D эл. Обрабатывают посадочную часть с чистотой не ниже 7-го класса (R z 1,25).

Диаметр внутреннего канала охлаждения определяется расходом охлаждающей воды и достаточной прочностью электрода на сжатие и составляет:

d 0 = (0,4 - 0,6) D эл (мм).

Расстояние от рабочей поверхности электрода до дна внутреннего канала в значительной степени влияет на эксплуатационные характеристики электрода: стойкость, ресурс работы. Чем меньше это расстояние, тем лучше охлаждение электрода, но тем меньше переточек может выдержать электрод. По опытным данным:

h = (0,75 - 0,80) D эл (мм).

Тугоплавкие вставки из вольфрама W или молибдена Мо (рис. 4ж) запрессовываются в медные электроды или припаиваются серебросодержащими припоями; такие электроды применяют при сварке оцинкованных или анодированных сталей. Электроды со сменной рабочей частью (рис. 4и) и с шаровым шарниром (рис. 4к) применяют при сварке деталей из разных материалов или разнотолщинных деталей. Сменная рабочая часть изготавливается из вольфрама, молибдена или их сплавов с медью и крепится к электроду накидной гайкой. Применяются также стальные или латунные электроды с напрессованной медной оболочкой (рис. 4з) или медные электроды со стальной подпружиненной втулкой.

Материалы для электродов точечной сварки

Стойкость электродов — их способность сохранять размеры и форму рабочей поверхности (торца), противостоять взаимному переносу металла электродов и свариваемых деталей (загрязнение рабочей поверхности электрода). Она зависит от конструкции и материала электрода, диаметра его цилиндрической части, угла конуса, свойств и толщины свариваемого материала, режима сварки, условий охлаждения электрода. Износ электродов зависит от конструкции электродов (материал, диаметр цилиндрической части, угол конуса рабочей поверхности) и параметров режима сварки. Перегрев, оплавление, окисление при работе во влажной или коррозионной среде, деформации электродов при больших усилиях сжатия, перекос или смещение электродов усиливают их износ.

Материал электродов выбирают с учетом следующих требований:

  • электропроводность, сравнимая с электропроводностью чистой меди;
  • хорошая теплопроводность;
  • механическая прочность;
  • обрабатываемость давлением и резанием;
  • стойкость к разупрочнению при циклическом нагреве.

По сравнению с чистой медью сплавы на ее основе имеют в 3-5 раз большую стойкость к механическим нагрузкам, поэтому для электродов точечной сварки с их, казалось бы, взаимоисключающими требованиями применяют сплавы меди. Легирование кадмием Cd, хромом Сr, бериллием Be, алюминием Al, цинком Zn, цирконием Zr, магнием Мg не снижает электропроводность, но повышает прочность в нагретом состоянии, а железо Fe, никель Ni и кремний Si повышают твердость и механическую прочность. Примеры использования некоторых медных сплавов для электродов точечной сварки приведены в таблице 2.

Выбор электродов для точечной сварки

При выборе электродов основными параметрами являются форма и размеры рабочей поверхности электрода. При этом обязательно учитывают марку свариваемого материала, сочетания толщин свариваемых листов, форму сварного узла, требования к поверхности после сварки и расчетные параметры режима сварки.

Различают следующие виды формы рабочей поверхности электрода:

  • с плоскими (характеризуются диаметром рабочей поверхности d эл);
  • со сферическими (характеризуются радиусом R эл) поверхностями.

Электроды со сферической поверхностью менее чувствительны к перекосам, поэтому их рекомендуют к применению на машинах радиального типа и подвесных машинах (клещах) и для фигурных электродов, работающих с большим прогибом. Российские производители рекомендуют использовать для сварки легких сплавов только электроды со сферической поверхностью, что позволяет избежать вмятин и подрезов по краям сварной точки (см. рис. 7). Но избежать вмятин и подрезов можно, применяя плоские электроды с увеличенным торцом. Такие же электроды на шарнире позволяют избежать перекоса и поэтому могут заменить сферические электроды (рис. 8). Однако эти электроды рекомендуются в основном для сварки листов толщиной ≤1,2 мм.

Согласно ГОСТ 15878-79 размеры рабочей поверхности электрода выбираются в зависимости от толщины и марки свариваемых материалов (см. табл. 3). После исследования сечения сварной точки становится ясно, что есть прямые отношения между диаметром электрода и диаметром ядра сварной точки. Диаметр электрода определяет площадь поверхности контакта, которая соответствует фиктивному диаметру проводника сопротивления r между свариваемыми листами. Сопротивление контакта R будет обратно пропорционально этому диаметру и обратно пропорционально предварительному сжатию электродов для сглаживания микронеровностей поверхности. Исследования компании ARO (Франция) показали, что расчет диаметра рабочей поверхности электрода можно вести по эмпирической формуле:

d эл = 2t + 3 мм.

Где t — номинальная толщина свариваемых листов.

Наиболее сложно рассчитать диаметр электрода при неравной толщине свариваемых листов, сварке пакета из трех и более деталей и сварке разнородных материалов. Очевидно, что при сварке разнотолщинных деталей диаметр электрода должен выбираться относительно более тонкого листа. Используя формулу для расчета диаметра электрода, которая пропорциональна толщине свариваемого листа, формируем фиктивный проводник с сужающимся диаметром, который, в свою очередь, перемещает пятно нагрева к точке контакта этих двух листов (рис. 10).

При одновременной сварке пакета из деталей выбор диаметра рабочей поверхности электрода делается по толщине наружных деталей. При сварке разнородных материалов с разными теплофизическими характеристиками меньшее проплавление наблюдается у металла с меньшим удельным электрическим сопротивлением. В этом случае со стороны детали из металла с меньшим сопротивлением применяется электрод с большим диаметром рабочей поверхности d эл или изготовленный из материала с большей теплопроводностью (например, из хромистой бронзы БрХ).

Валерий Райский
Журнал «Оборудование: рынок, предложение, цены», № 05, май 2005 г.

Литература:

  1. Кнорозов Б.В., Усова Л.Ф., Третьяков А.В. Технология металлов и материаловедение. - М., Металлургия, 1987.
  2. Справочник машиностроителя. Т. 5, кн. 1. Под ред. Сатель Э.А. - М., Машгиз, 1963.

Точечная сварка, благодаря появлению компактных ручных аппаратов типа BlueWeldPlus, становится популярной не только при промышленных масштабах применения, но и в быту. Слабым местом такой технологии являются электроды для контактной сварки: их низкая стойкость во многих случаях отпугивает потребителя.

Причины недолговечности электродов контактной электросварки

Процесс контактнойсварки состоит из следующих стадий:

  1. Предварительной подготовки поверхности соединяемых деталей – она должна быть непросто очищена от загрязнений и окислов, но и очень ровной, чтобы исключить неравномерность возникающего напряжения электрического поля.
  2. Ручного или механического прижима свариваемых изделий – с увеличением усилия прижима растут интенсивность диффузии и механическая прочность сварного шва.
  3. Локального расплавления металлов в зоне прижима теплом электрического тока, в результате чего формируется сварочное соединение. Прижим электродов на этой стадии препятствует образованию сварочных брызг.
  4. Отключения тока и постепенного остывания сварного шва.

Таким образом, материал электродов для контактной сварки претерпевает не только значительные термические напряжения, но и механические нагрузки. Поэтому к нему предъявляется ряд требований – высокая электропроводность, высокая термическая стойкость (в том числе – и от постоянных колебаний температуры), повышенные значения предела прочности на сжатие, малый коэффициент теплоёмкости. Таким комплексом свойств обладает ограниченное число металлов. В первую очередь – это медь, и сплавы на её основе, однако и они не всегда удовлетворяют производственным требованиям.

В связи с постоянным повышением энергетических характеристик производимых многие торговые марки ориентируют потребителя на применение только «своих», фирменных электродов, что не всегда соблюдается. В результате снижается качество сварных швов, получаемых по такой технологии, подрывается доверие к самому процессу контактной электросварки.

Преодоление указанных проблем производится двумя путями: совершенствованием видов и конструкций сварочных электродов для точечной сварки, и разработкой новых материалов, используемых для изготовления таких электродов. Для частных пользователей имеет значение также и цена вопроса.

Материалы электродов

Согласно ГОСТ 2601, критерием качества готового шва является его прочность на разрыв или сдвиг. Она зависит от интенсивности тепловой мощности в зоне электрического разряда, а потому связывается в первую очередь с теплофизическими характеристиками материала электродов.

Использование медных электродов малоэффективно по двум причинам. Во-первых, медь, являясь высокопластичным металлом, не обладает достаточной упругостью, чтобы в период между рабочими циклами полностью восстановить геометрическую форму электродов. Во-вторых, медь весьма дефицитна, а частая замена электродов обуславливает и высокие финансовые затраты.

Попытки использовать более твёрдую, упрочнённую медь успеха не имеют: для нагартованного материала параллельно с повышением твёрдости снижается температура рекристаллизации, поэтому с каждым рабочим циклом износ рабочего торца электрода для контактной сварки будет возрастать. Поэтому практическое применение получили медные сплавы с добавлением ряда других металлов. В частности, введение в медный сплав кадмия, бериллия, магния, цинка и алюминия мало изменяет показатель теплопроводности, зато улучшает твёрдость при нагреве. Стойкость электрода от динамических тепловых нагрузок увеличивают железо, никель, хром и кремний.

При подборе оптимального материала сварочных электродов для контактной сварки ориентируются на показатель удельной электропроводности сплава. Чем меньше он будет отличаться (в меньшую сторону) от электропроводности чистой меди – 0,0172 Ом·мм 2 /м, тем лучше.

Наиболее эффективную стойкость против износа и деформации показывают сплавы, в состав которых входят кадмий (0,9…1,2%), магний (0,1…0,9%) и бор (0,02…0,03%).

Выбор материала для электродов точечной сварки зависит также и от конкретных задач процесса. Можно выделить три группы:

  1. Электроды, предназначенные для проведения контактной сварки в жёстких условиях (непрерывное чередование циклов, поверхностные температуры до 450…500ºС). Их изготавливают из бронз, содержащих хром и цирконий (Бр.Х, Бр.ХЦр 0,6-0,05. В эту же группу включают никель- кремнистые бронзы (Бр.КН1-4), а также бронзы, дополнительно легированные титаном и бериллием (Бр.НТБ), используемые для точечной сварки нержавеющих и жаропрочных сталей и сплавов.
  2. Электроды, применяемые при контактных температурах на поверхности до 250…300ºС (сварка обычных углеродистых и низколегированных сталей, медных и алюминиевых изделий). Их производят из медных сплавов марок МС и МК.
  3. Электроды для относительно лёгких режимов эксплуатации (поверхностные температуры до 120…200ºС). В качестве материалов применяется кадмиевая бронза Бр.Кд1, хромистая бронза Бр.Х08, кремненикелевая бронза Бр.НК и др. Такие электроды могут использоваться также и для роликовой контактной электросварки.

Следует отметить, что по убыванию удельной электропроводности (по отношению к чистой меди) эти материалы располагаются в следующей последовательности: Бр.ХЦр 0,6-0,05→МС→МК→Бр.Х→Бр.Х08→Бр.НТБ→Бр.НК →Бр.Кд1→Бр.КН1-4. В частности, разогрев до требуемой температуры электрода, изготовленного из бронзы Бр.ХЦр 0,6-0,05 произойдёт примерно вдвое быстрее, чем полученного из бронзы Бр.КН1-4.

Конструкции электродов

Наименее стойким местом электрода является его сферическая рабочая часть. Электрод бракуется, если увеличение размеров торца превышает 20% от первичных размеров. Конструкция электродов определяется конфигурацией свариваемой поверхности. Различают следующие исполнения инструмента

  1. С цилиндрической рабочей частью и конической посадочной частью.
  2. С коническими посадочной и рабочей частью, и переходным цилиндрическим участком.
  3. Со сферическим рабочим торцом.
  4. Со скошенным рабочим торцом.

Кроме того, электроды могут быть сплошными и составными.

При самостоятельном изготовлении (либо перезаточке) рекомендуется выдерживать следующие соотношения размеров, при которых инструмент будет обладать максимальной стойкостью:

  • Для расчёта диаметра электрода d пользуются зависимостью Р = (3…4)d 2 , где Р – фактически необходимое сжатие электродов при проведении процесса контактной электросварки. В свою очередь, рекомендуемые значения давления осадки, при котором получаются наиболее качественные соединения, составляет 2,5…4,0 кг/мм 2 площади получаемого сварного шва;
  • Для электродов с конической рабочей частью оптимальный угол конусности варьируется от 1:10 (для инструмента с диаметром рабочей части до 30…32 мм) до 1:5 – в противоположном случае;
  • Выбор угла конуса определяется также и наибольшим усилием сжатия: при максимальных усилиях рекомендуется принимать конусность 1:10, как обеспечивающую повышенную продольную стойкость электрода.

Основные формы электродов для контактной сварки устанавливает ГОСТ 14111, поэтому, применяя те или иные соотношения размеров, следует учитывать размеры посадочного пространства под инструмент для конкретной модели машины контактной сварки.

Значительную экономию материала даёт применение составных конструкций. При этом для изготовления корпуса применяют материалы с высокими значениями электропроводности, а съёмную рабочую часть изготавливают из сплавов с высокой твёрдостью и износостойкостью (в том числе и термической). В частности, подобным сочетанием свойств обладают металлокерамические сплавы от швейцарской фирмы АМРСО марок A1W или A1WC, содержащие 56% вольфрама и 44% меди. Их электропроводность достигает 60% от электропроводности чистой меди, что определяет малые потери на нагрев при выполнении сварки. Рекомендуемым материалом могут быть и бронзовые сплавы с добавками хрома и циркония, а также вольфрам.

Электроды для контактной сварки лёгких сплавов, где не требуется значительного усилия прижима, выполняют со сферической рабочей частью, а для контактных губок аппаратов точечной электросварки целесообразно применять кремнистые бронзы.

Механические характеристики электродов должны находиться в следующих пределах:

  • Твёрдость по Бринеллю, НВ – 1400…2600;
  • Модуль Юнга, ГПа – 80…140;
  • Предельный изгибающий момент, кгсм – не ниже 750…800.

Конструкции электродов всегда должны быть полыми, для обеспечения эффективного охлаждения.