Кривые окислительно-восстановительного титрования. Окислительно-восстановительное титрование

Химические элементы, имеющие переменную степень окисления, могут быть количественно определены титриметрически с применением окислительно-восстановительной реакции (ОВР). Методы окислительно-восстановительного (ОВ) титрования или red-ox-методы – это титриметрические методы, основанные на использовании окислительно-восстановительных реакций.

Окислительно-восстановительное титрование можно разделить:

1 По характеру титранта:

– оксидиметрические – методы определения восстановителей с применением титранта-окислителя;

– редуктометрические – методы определения окислителя с применением титранта-восстановителя.

2 По природе реагента (титранта), взаимодействующего с определенным веществом:

– KMnO 4 – перманганатометрия;

– KBrO 3 – броматометрия;

– KI,Na 2 S 2 O 3 – иодометрия;

– I 2 – иодиметрия;

– Br 2 – бромометрия;

– Ce(SO 4) 2 – цериметрия

В зависимости от решаемой аналитической задачи в редоксиметрии используют прямое, обратное и заместительное титрования. Редоксиметрически могут быть количественно определены как неорганические, так и органические вещества. Например, восстановлением с помощью перманганата калия в сильнощелочной среде могут быть определены метанол, муравьиная, винная, лимонная, салициловая кислоты, а также глицерин, фенол, формальдегид и др.

Схематично ОВР, с учетом закона электронейтральности раствора, можно изобразить следующим образом:

mOX1+ nRed2↔ mRed1+ n OX2

Здесь индексы 1 и 2 относятся к веществам 1и 2 в окисленной (Ox1 и Ox2) и восстановленной (Red1 и Red2) формах. В ходе ОВР вещество Ох1 с большим сродством к электрону (окислитель) присоединяет электроны, понижает свою степень окисления, восстанавливается, а вещество Red2 с меньшим сродством к электрону (восстановитель) окисляется.

Окисленная и восстановленная формы реагирующих в ОВР веществ образуют окислительно-восстановительные (оксред-, редокс-) пары Ох1/Red1 и Ox2/Red2, а превращения типа Ox+ze Red называют оксред - (редокс)-переходами или окислительно-восстановительными полуреакциями.


§2. Окислительно-воостановительный потенциал.

Уравнение Нернста.

Окислительно-восстановительные процессы, как и все динамические процессы, в той или иной мере обратимы. Направление реакций определяется соотношением электронодонорных свойств компонентов системы одной окислительно-восстановительной полуреакции и электроно-акцепторных свойств второй (при условии постоянства факторов, влияющих на смещение равновесных химических реакций). Перемещение электронов в ходе окислительно-восстановительных реакций приводит к возникновению потенциала. Таким образом, потенциал, измеряемый в вольтах, служит мерой окислительно-восстановительной способности соединения.

Для количественной оценки редокс-свойств редокс-пар используют редокс - (окислительно-восстановительные) потенциалы. При вычислении окислительно-восстановительного потенциала используют уравнение Нернста :

E (Ox/Red) = E 0 (Ox/Red) +

где E(Ox/Red) - реальный или равновесный редокс-потенциал, В;

E 0 (Ox/Red) - стандартный редокс-потенциал, равный равновесному при а(Ох) = а(Red) = 1 моль/дм 3 ;

R - универсальная газовая постоянная (8,31 Дж/К·моль);

Т - абсолютная температура, K; F - число Фарадея (96500 Кл/моль);

z - число электронов, участвующих в редокс-переходе в ОХ+ze dRed;

a(OX) и a(Red) - активности соответственно окисленной и восстановленной форм вещества, моль/дм 3 .

При подстановке в уравнение Нернста значений R, F и T = 298 К, а также переходе к десятичному логарифму, получим

E(Ox/Red) =E 0 (Ox/Red) +

Редокс-потенциал зависит также от кислотности среды, комплексообразования или осаждения одного из компонентов редокс-пары в процессе редокс-перехода. Чем больше концентрация ионов водорода в растворе, тем больше окислительная способность окисленной формы вещества редокс-пары и тем больше E(Ox/Red).

При выборе вещества титранта в редоксиметрии проводят качественную и количественную оценку возможности (направленности) и полноты прохождения ОВР между титрантом и определяемым веществом.

Качественную оценку проводят путем сравнения табличных величин E 0 (Ox|Red) вещества титранта и определяемого вещества, приведенных в аналитических, химических и физико-химических справочниках.

Перманганатометрия

Перманганатометрическим методом объемного анализа называют метод, основанный на окислении различных веществ перманганатом калия (KMnO 4).

В зависимости от условий, в которых протекает реакция окисления-восстановления, ионы MnO 4 – могут принимать различное число электронов.

В кислой среде:

В нейтральной среде:

В щелочной среде:

Нормальный потенциал системы Е 0 (MnO 4 – ⁄Mn 2+) = +1,52В, а Е 0 (MnO 4 – ⁄MnO 2) = +0,57В, поэтому перманганат калия в кислой среде обладает сильными окислительными свойствами и способен окислять многие вещества.

Эквивалент перманганата калия в кислой среде равен:

М(1/zKMnO 4) = М(KMnO 4)/n e = 158/5 = 31,608 г/моль

В лабораторной практике перманганат калия применяют в виде растворов различной концентрации. Обычно пользуются 0,1н раствором KMnO 4 , хотя в некоторых случаях применяют 0,01н, 0,05н, 0,2н растворы.

Приготовление рабочего раствора KMnO 4

Перманганат калия, применяющийся для приготовления рабочего раствора KMnO 4 , обычно содержит ряд примесей, из которых наиболее значительными являются соединения марганца (IV). Кроме того, в первые дни после приготовления раствора происходит восстановление KMnO 4 органическими примесями, содержащимися даже в дистиллированной воде. В результате концентрация раствора KMnO 4 изменяется:

Поэтому сначала готовят раствор приблизительной концентрации. Например, для приготовления 500 мл 0,1н раствора KMnO 4 рассчитывают необходимую навеску вещества по формуле:

m(KMnO 4) = N(KMnO 4) · M(1/zKMnO 4) · V

m=31,608 0,1 0,5≈1,58г.

Навеску растворяют в мерной колбе объемом 0,5л. Раствор переливают в склянку из темного стекла и оставляют в темном месте не менее чем на неделю. За это время перманганат окислит все примеси, содержащиеся в воде, а образовавшийся в результате частичного восстановления перманганата диоксид марганца MnO 2 осядет на дно склянки. Раствор отфильтровывают от MnO 2 и хранят в темных склянках. Очевидно, что после этого приступают к стандартизации раствора.

В качестве исходных веществ для установки точной концентрации раствора KMnO 4 обычно применяют оксалат аммония (NH 4) 2 C 2 O 4 ·H 2 O, оксалат натрия Na 2 C 2 O 4 и щавелевую кислоту H 2 C 2 O 4 ·2H 2 O. Наиболее удобным является оксалат натрия, т.к. он кристаллизуется без воды и не гигроскопичен.

Реакция автокаталитическая, поэтому для ускорения процесса раствор следует нагреть.

Разность потенциалов для этой реакции определяют вычитанием из нормального потенциала системы MnO 4 – /Mn 2+ (E 0 =+152В) нормального потенциала системы 2CO 2 /C 2 O 4 2– (E 0 =–0,49В), то Е = +1,52–(–0,49)=2,01В

Большая разность потенциалов показывает, что реакция необратима.

Все продукты этой реакции бесцветны, тогда как раствор KMnO 4 красно-фиолетовый. Поэтому течение реакции должно сопровождаться обесцвечиванием прибавляемого раствора перманганата. Если прибавить к кислому раствору оксалата натрия 2–3 капли раствора KMnO 4 , бесцветный раствор окрасится в розовый цвет, что указывает на присутствие непрореагировавшего KMnO 4 . Окраска исчезает только через несколько минут. Это свидетельствует о небольшой вначале скорости реакции. Обесцвечивание раствора после прибавления последующих капель раствора KMnO 4 происходит все быстрее и быстрее, и, наконец, будет происходить почти моментально вплоть до точки эквивалентности. Лишняя капля KMnO 4 окрасит титруемый раствор в неисчезающий розовый цвет.

Данный метод титриметрического анализа основан на окислительно-восстановительных реакциях между титрантом и анализируемым веществом. Реакции окисления-восстановления связаны с переносом электронов. Вещества, отдающее электроны, в этих реакциях является восстановителем (Red), а приобретающее электроны – окислителем (Ох):

Red 1 + Ox 2 = Ox 1 + Red 2 .

Восстановленная форма одного вещества (Red 1), отдавая электроны, переходит в окисленную форму (Ox 1) того же вещества. Образуется сопряженная окислительно-восстановительная пара Ox 1 /Red 1 (редокс-пара). Окисленная форма другого вещества (Ox 2), принимая электроны, переходит в восстановленную форму (Red 2) того же вещества. Образуется другая окислительно-восстановительная пара Ox 2 /Red 2 . Таким образом, в окислительно-восстановительной реакции участвует не менее двух окислительно-восстановительных пар. Мерой окислительно-восстановительных свойств веществ является окислительно-восстановительный потенциал Е 0 . Сравнивая стандартные потенциалы ОВ-пар, участвующих в ОВР, можно заранее определить направление самопроизвольного протекания реакции. Окислительно-восстановительная реакция самопроизвольно протекает в направлении превращения сильного окислителя в слабый восстановитель, сильного восстановителя в слабый окислитель.

Чем больше стандартный потенциал окислительно-восстановительной пары, тем более сильным окислителем является её окисленная форма и тем более слабым восстановителем – восстановленная форма. Чем меньше стандартный потенциал ОВ-пары, тем более сильным восстановителем является восстановленная форма, тем более слабым окислителем – окисленная форма. Поэтому в окислительно-восстановительном титровании (редоксиметрии) в качестве титрантов при определении восстановителей применяют такие окислители (Ох 2), стандартные ОВ-потенциалы окислительно-восстановительных пар которых имеют как можно более высокие значения, тем самым с их помощью можно оттитровать большее число восстановителей (Red 1). Например, Е 0 (MnO 4 - , H + , Mn 2+) = +1,51В, Е 0 (Cr 2 O 7 2- , H + , Cr 3+) = +1,33В и др.

При определении окислителей (Ох 2) в качестве титрантов применяют восстановители (Red 1), стандартный ОВ-потенциал редокс-пар которых имеет по возможности минимальное значение. Например, Е 0 (I 2 / 2I -) = +0,536В, Е 0 (S 4 O 6 2- / 2S 2 O 3 2-) = +0,09В и др.

Для установления точки эквивалентности в редоксиметрии используют редокс-индикаторы (окислительно-восстановительные индикаторы), представляющие собой вещества, способные обратимо окисляться и восстанавливаться, причем окисленная и восстановленная формы их имеют различную окраску. Примером такого индикатора является дифениламин. Часто в редоксиметрии применяется так называемое безиндикаторное титрование , например, в перманганатометрии роль индикатора выполняет титрант – перманганат калия. Количественные расчеты в ОВ титровании, как и в других методах титриметрического анализа, основаны на законе эквивалентов.


Молярная масса эквивалента окислителя:

(39)

Молярная масса эквивалента восстановителя:

(40)

Одним из методов окислительно-восстановительного титрованияявляется перманганатометрическое титрование. Это метод анализа, в котором в качестве титранта-окислителя используют раствор перманганата калия KMnO 4 . Анион MnO 4 - проявляет окислительные свойства в кислой, нейтральной и щелочной средах, восстанавливаясь соответственно до катиона Mn 2+ (бесцветные ионы), оксида марганца (IV) MnO 2 (бурый осадок) и аниона MnO 4 2- (зеленый раствор, буреющий на воздухе).

Уравнения полуреакций:

Кислая среда

MnO 4 - + 8H + + 5e - → Mn 2+ + 4H 2 O

E 0 (MnO 4 - , H + ,Mn 2+) = +1,51В

Нейтральная среда

MnO 4 - + 2H 2 O + 3e - → MnO 2 ↓ + 4OH -

E 0 (MnO 4 - /MnO 2) = + 0,60В

Щелочная среда

MnO 4 - + e - → MnO 4 2-

E 0 (MnO 4 - /MnO 4 2-) = + 0,56В

В перманганатометрии титрование проводят в кислой среде, так как:

1) наиболее сильными окислительными свойствами перманганат-ион MnO 4 - обладает в кислой среде по сравнению с нейтральной и щелочной, о чем свидетельствуют значения стандартных ОВ-потенциалов (+1,51В против +0,60В и +0,56В);

2) определению конечной точки титрования в нейтральной среде будет мешать бурый осадок MnO 2 ; в щелочной среде образующиеся манганат-ионы MnO 4 2- , имеющие зеленую окраску, также затрудняют фиксацию конечной точки титрования. Образующиеся же в кислой среде катионы Mn 2+ бесцветны;

3) при титровании в кислой среде создается возможность четко фиксировать конечную точку титрования без применения постороннего индикатора, так как одна лишняя капля перманганата калия окрашивает бесцветный раствор в бледно-розовый цвет.

Титрант : раствор перманганата калия (в кислой среде).

Индикатор : перманганат калия.

Определяемые вещества : ионы Fe 2+ , Cr 3+ , NO 2 - , перекись водорода Н 2 О 2 , этиловый спирт, в биологических исследованиях мочевая кислота, глюкоза, содержание некоторых витаминов, активность фермента каталазы, окисляемость бытовых и сточных вод, органические загрязнения в атмосфере.

Одним из недостатков перманганатометрии является необходимость стандартизации раствора перманганата калия, так как его титрованный раствор нельзя приготовить по точной навеске. Кроме того, концентрация перманганата калия, переведенного в раствор, заметно уменьшается. Поэтому точную концентрацию раствора КMnO 4 устанавливают не ранее чем через 5 – 7 дней после его приготовления. Для стандартизации используют щавелевую кислоту или её соли (оксалаты натрия или аммония).

Стандартные вещества : Н 2 С 2 О 4 ·2Н 2 О, Na 2 C 2 O 4 , (NH 4) 2 C 2 O 4 ∙H 2 O.

Уравнение реакции, протекающей при стандартизации раствора KMnO 4 по щавелевой кислоте:

Н 2 С 2 О 4 + КMnO 4 + H 2 SO 4 → CO 2 + Mn 2+ + …

C 2 O 4 2- – 2e - → 2CO 2 5

MnO 4 - + 8H + + 5e - → Mn 2+ + 4H 2 O 2

Методы редоксометрии основаны на реакциях окисления-восстановления. Разработано очень много методов. Их классифицируют в соответствии с применяемым стандартным (рабочим, титрантом) раствором. Наиболее часто применяются следующие методы:

Перманганатометрия - метод, который основан на окислительной способности рабочего раствора перманганата калия KМnO4. Титрование ведется без индикатора. Применяется для определения только восстановителей при прямом титровании.

Иодометрия - метод, в котором рабочим титрованным раствором служит раствор свободного иода в КI. Метод позволяет определять как окислители, так и восстановители. Индикатором служит крахмал.

Дихроматометрия основана на использовании в качестве рабочего раствора дихромата калия K2Cr2O7. Метод может применяться как для прямых так и косвенных определений восстановителей.

Броматометрия основана на использовании в качестве титранта бромата калия KBrO3 при определении восстановителей.

Иодатометрия применяет в качестве рабочего раствора раствор иодата калия KIO3 при определении восстановителей.

Ванадатометрия дает возможность использовать окислительную способность ванадата аммоноя NH4VO3. Кроме перечисленных методов в лабораторной практике используются и такие методы как цериметрия (Ce4+), титанометрия и другие.

Для вычисления молярной массы эквивалента окислителей или восстановителей учитывается число электронов, принимающих участие в окислительно-восстановительной реакции (Мэ = М/ne, где n - число электронов е). Для определения числа электронов необходимо знать начальную и конечную степень окисления окислителя и восстановителя.

Из большого числа окислительно-восстановительных реакций для химического анализа используют только те реакции, которые:

  • · протекают до конца;
  • · проходят быстро и стехиометрично;
  • · образуют продукты определенного химического состава (формулы);
  • · позволяют точно фиксировать точку эквивалентности;
  • · не вступают в реакцию с побочными продуктами, присутствующими в исследуемом растворе.

Наиболее важными факторами, оказывающими влияние на скорость реакции, являются:

  • · концентрация реагирующих веществ;
  • · температура;
  • · значение рН раствора;
  • · присутствие катализатора.

В большинстве случаев скорость реакции находится в прямой зависимости от температуры и рН раствора. Поэтому многие определения методом окислительно-восстановительного титрования следует проводить при определенном значении рН и при нагревании.

Индикаторы окислительно-восстановительного титрования

окислительный восстановительный титрование

При анализе методами окислительно-восстановительного титрования используется прямое, обратное и заместительное титрование. Точка эквивалентности окислительно-восстановительного титрования фиксируется как с помощью индикаторов, так и безиндикаторным способом. Безиндикаторный способ применяется в тех случаях, когда окисленная и восстановленная формы титранта отличаются. В точке эквивалентности, при введении 1 капли избытка раствора титранта изменит окраску раствора. Безиндикаторным способом можно проводить определения перманганатометрическим методом, т.к. в точке эквивалентности от одной капли раствора перманганата калия титруемый раствор окращивается в бледнорозовый цвет.

При индикаторном способе фиксирования точки эквивалентности применяют специфические и редоксиндикаторы. К специфическим индикаторам относится крахмал в иодометрии, который в присутствии свободного иода окрашивается в интенсивно-синий цвет вследствие образования адсорбционного соединения синего цвета. Редокс-индикаторы - это вещества, у которых окраска меняется при достижении определенного значения окислительно-восстановительного (редокспотенциала). К редокс-индикаторам относится, например, дифениламин NH(C6H5) 2. При действии на бесцветные растворы его окислителями он окрашивается в сине-фиолетовый цвет.

Редокс-индикаторам предъявляют следующие требования:

  • · окраска окисленной и восстановленной формы должна быть различна;
  • · изменение цвета должно быть заметно при небольшом количестве индикатора;
  • · индикатор должен реагировать в точке эквивалентности с весьма небольшим избытком восстановителя или окислителя;
  • · интервал действия его должен быть как можно меньше;
  • · индикатор должен быть устойчив к воздействию компонентов окружающей среды (О2, воздуха, СО2, света и т.п.).

Интервал действия редокс-индикатора рассчитывается по формуле:

Е = Ео ± 0,058/n,

где Ео - нормальный окислительно-восстановительный потенциал индикатора (в справочнике), n - число электронов, принимающих в процессе окисленияили восстановления индикатора.

Методы окислительно-восстановительного титрования, или редокс-методы, основаны на использовании реакций с переносом электронов - окислительно-восстановительных (ОВ) реакций. Другими словами, окислительно-восстановительное титрование, илиредоксметрия, - это титрование, сопровождаемое переходом одного или большего числа электронов от иона-донора или молекулы (восстановителя)Red 1 к акцептору (окислителю) Ох 2:

Red 1 + Ох 2 =Ox 1 +Red 2

Восстановленная форма одного вещества Red 1 , отдавая электроны, переходит в окисленную форму Ох 1 того же вещества. Обе эти формы oбpaзуют oдну peдoкc-пapу Ox l Red l .

Окисленная форма Ох 2 второго вещества, участвующего в ОВ реакции, принимая электроны, переходит в восстановленную формуRed 2 того же вещества. Обе эти формы также образуют редокс-паруOx 2 Red 2 .

В любой окислительно-восстановительной реакции участвуют, по крайней мере, две редокс-пары.

Чем выше ОВ потенциал редокс-пары Ох 2 Red 2 , окисленная форма которой играет роль окислителя в данной реакции, тем большее число восстановителейRed 1 можно оттитровать и определить с помощью данного окислителя Ох 2 . Поэтому в редоксметрии в качестве титрантов чаще всего применяют окислители, стандартные ОВ потенциалы редокс-пар которых имеют как можно более высокие значения, например (при комнатной температуре):

Се 4+ ,Е °(Се 4+ Се 3+)= 1,44 В; МnО 4 ‑ ,Е °(МnО 4 ‑ , Н + Мn 2+) = 1,51 В,

Cr 2 O 7 2‑ ,Е °(Cr 2 О 7 2‑ , Н + Сr 3+) = 1,33 В и др.

Напротив, если определяемые вещества - окислители Ох 2 , то для их титрования целесообразно применять восстановители, стандартный ОВ редокс-пар которых имеет по возможности минимальное значение, например

JֿE °(J 2 J⁻) = 0,54 В; S 2 O 3 2‑ , (S 4 O 6 2‑ S 2 O 3 2‑) = 0,09 B и т.д.

Редокс-методы - важнейшие фармакопейные методы количественного анализа.

4.2. Классификация редокс-методов

Известно несколько десятков различных методов ОВ титрования. Обычно их классифицируют следующим образом.

Классификация по характеру титранта. В этом случае методы ОВ титрования подразделяют на две группы:

оксидиметрия - методы определения восстановителей с применением титранта-окислителя;

редуктометрия - методы определения окислителей с применением титранта-восстановителя.

Классификация по природе реагента, взаимодействующего с определяемым веществом. Ниже после названия соответствующего метода в скобках указано основное действующее вещество этого метода:броматометрия (бромат калия КВrO 3 ,бромометрия (бромBr 2),дихроматометрия (дихромат калия К 2 Сr 2 O 7),иодотометрия (иодат калия КJO 3),иодиметрия (иодJ 2),иодометрия (иодид калия КJ, тиосульфат натрияNa 2 S 2 O 3 ,нитритометрия (нитрит натрияNaNO 2),перманганатометрия (перманганат калия КМnО 4).хлориодиметрия (хлорид иода JС1),цериметрия (сульфат церия(IV)).

Реже применяются некоторые другие методы ОВ титрования, такие, как: аскорбинометрия (аскорбиновая кислота),титанометрия (соли титана(III)),ванадатометрия (ванадат аммонияNH 4 VO 3) и т.д.

4.3. Условия проведения окислительно-восстановительного титрования

Реакции, применяемые в методах ОВ титрования, должны отвечать ряду требований, важнейшими из которых являются следующие:

Реакции должны протекать практически до конца. ОВ реакция идет тем полнее, чем больше константа равновесияК, которая определяется соотношением

lgK =n(E 1 °‑E 2 °)/0,059

при комнатной температуре, где E 1 ° иЕ 2 ° - соответственно стандартные ОВ потенциалы редокс-пар, участвующих в данной ОВ реакции,п - число электронов, отдаваемых восстановителем окислителю. Следовательно, чем больше разностьE ° =Е 1 ° - Е 2 °, тем выше константа равновесия, тем полнее протекает реакция. Для реакций типа

А + В = Продукты реакции

при n =1 иК 10 8 (при таком значенииК реакция протекает не менее чем на 99,99%) получаем дляE °:

E °0,059lg10 8 0,47 В.

Реакция должна протекать достаточно быстро, чтобы равновесие, при котором реальные ОВ потенциалы обеих редокс-пар равны, устанавливалось практически мгновенно. Обычно ОВ титрование проводят при комнатной температуре. Однако в случае медленно протекающих ОВ реакций растворы иногда нагревают, чтобы ускорить ход реакции. Так, реакция окисления сурьмы(Ш) бромат-ионами в кислой среде при комнатной температуре идет медленно. Однако при 70-80 °С она протекает достаточно быстро и становится пригодной для броматометрического определения сурьмы.

Для ускорения достижения равновесия применяют также гомогенные катализаторы. Рассмотрим, например, реакцию

HAsO 2 + 2Се 4+ + 2H 2 O=H 3 AsO 4 + 2Се 3+ + 2H +

Стандартные ОВ потенциалы редокс-пар, участвующих в реакции, равны при комнатной температуре E °(Се 4+ Се 3+) = 1,44 В,E º (H 3 AsO 4 HAsO 2 = 0,56 В. Отсюда для константы равновесия этой реакции получаем (n= 2)

lgK = (1,44 ‑ 0,56)/0,059≈30;К 10 30

Константа равновесия велика, поэтому реакция идет с очень высокой степенью полноты. Однако в обычных условиях она протекает медленно. Для ее ускорения в раствор вводят катализаторы.

Иногда катализатором являются сами продукты ОВ реакции. Так, при перманганатометрическом титровании оксалатов в кислой среде по схеме

5C 2 O 4 2‑ + 2МnО 4 ‾ + 16Н + = 2Мn 2+ + 10CO 2 + 8Н 2 O

в роли катализатора выступают катионы марганца(II) Мn 2+ . Поэтому вначале при прибавлении раствора титранта - перманганата калия - к титруемому раствору, содержащему оксалат-ионы, реакция протекает медленно.Bсвязи с этим титруемый раствор нагревают. По мере образования катионов марганца(II) достижение равновесия ускоряется и титрование проводится без затруднений.

Реакция должна протекать стехиометрически , побочные процессы должны быть исключены.

Конечная точка титрования должна определяться точно и однозначно либо с индикаторами, либо без индикаторов.

степени окисления

Например:

Например:

Способы установления Т.Э.

Для определения точки эквивалентности при окислительно-восстановительном титровании используют:

а) безиндикаторные методы. В случае, когда раствор титруемого вещества или титранта имеют окраску, ТЭ можно определить по исчезновению или появлению этой окраски, соответственно;

б) специфические индикаторы – изменяющие цвет при появлении титранта или исчезновении определяемого вещества. Например, для системы J 2 /2J - , специфическим индикатором является крахмал, окрашивающий растворы, содержащие J 2 в синий цвет, а для ионов Fe 3+ специфическим индикатором являются ионы SCN - (ионы тиоцианата), образующийся комплекс окрашен в кроваво-краный цвет;



в) ОВ (редокс-) индикаторы – изменяющие цвет при изменении ОВ потенциала системы. Одноцветные индикаторы – дифениламин, двухцветные – ферроин.

Редокс – индикаторы существуют в двух формах – окисленной (Ind ок) и восстановленной (Ind восс), причем цвет одной формы отличается от другой. Переход индикатора от одной формы в другую и изменение его окраски происходит при определенном потенциале перехода, который наблюдается при равенстве концентраций окисленной и восстановленной форм индикатора и по уравнению Нернста –Петерса:

Интервал перехода редокс-индикаторов очень невелик в отличие от кислотно-основных индикаторов.

Кривые ОВ титрования

Кривые ОВ титрования ОВ изображают изменение ОВ потенциала системы по мере приливания раствора титранта.

Редуктометрия, когда раствор окислителя титруется стандартным раствором восстановителя

В редуктометрии кривые титрования рассчитывают:

2)

3)

Оксидиметрия, когда раствор восстановителя титруется стандартным раствором окислителя


В оксидиметрии кривые титрования рассчитывают:

2)

3)

Пример. Рассчитаем кривую титрования 100 см 3 раствора FeSO 4 c молярной концентрацией эквивалента 0,1 моль/дм 3 раствором КMnO 4 такой же концентрации.

Уравнение реакции:

Константа равновесия этой реакции равна

Большое числовое значение константы равновесия показывает, что равновесие реакции практически целиком сдвинуто вправо. После добавления первых же капель титранта в растворе образуются две ОВ пары: , потенциал каждой из которых можно вычислить по уравнению Нернста:

В данном случае раствор восстановителя титруется раствором окислителя, т.е. титрование относится к методу оксидиметрии, расчет кривой титрования проводим по соответствующей схеме.



3) После Т.Э.

Расчетные данные для построения кривой титрования

№ п/п τ Расчетная формула E, В
0,10 0,71
0,50 0,77
0,90 0,83
0,99 0,89
0,999 0,95
1,39
1,001 1,47
1,01 1,49
1,10 1,50
1,50 1,505

По данным таблицы строим кривую титрования:

Для ошибки титрования ± 0,1 % скачок титрования

∆E = E τ =1,001 - E τ =0,999 = 1,47 – 0,95 = 0,52.

Для ошибки титрования ± 1,0 % скачок титрования

∆E = E τ =1,01 - E τ =0,99 = 1,49 – 0,89 = 0,60.

В области ТЭ при переходе от раствора недотитрованного на 0,1 % к раствору перетитрованному на 0,1 % потенциал изменяется больше, чем на 0,5 В. Скачок потенциала позволяет использовать для обнаружения ТЭ непосредственно потенциометрические измерения или ОВ индикаторы, окраска которых изменяется при изменении потенциала. Кроме того в этом случае в качестве титранта используется окрашенный раство, следовательно Т.Э. можно определить по появлению слабо-розовой окраски от одной избыточной капли перманганата калия.

ПЕРМАНГАНАТОМЕТРИЯ

В основе метода лежит окисление растворов восстановителей перманганатом калия КМnО 4 . Окисление восстановителей можно проводить в различных средах, причем марганец (VII) восстанавливается в кислой среде до ионов Мn 2+ , в нейтральной - до марганца (IV) и в щелочной - до марганца (VI). Обычно в методе перманганатометрии проводят реакцию в кислой среде. При этом протекает полуреакция

Титрованный раствор по точной навеске приготовить нельзя, т.к. он содержит в своем составе . Поэтому сначала готовят раствор приблизительно нужной концентрации, оставляют в темной бутыли на 7-10 дней, отфильтровывают выпавший в осадок , а затем устанавливают точную концентрацию полученного раствора . Стандартизацию раствора проводят по титрованному раствору щавелевой кислоты () или оксалата натрия ().

Индикатором служит сам перманганат, окрашенный в красно-фиолетовый цвет. Конец реакции легко определяется по изменению окраски от одной избыточной капли перманганата. В кислой среде титруемый раствор окрашивается в розовый цвет за счет избыточных МnО 4 - -ионов. Большим недостатком окислительно-восстановительных реакций является их небольшая скорость, что затрудняет процесс титрования. Для ускорения медленно идущих реакций применяют нагревание. Как правило, с повышением температуры на каждые 10° скорость реакции увеличивается в 2-3 раза. Реакцию окисления перманганатом щавелевой кислоты, проводят при температуре 70-80 °С. В этих условиях титрование проходит нормально, так как скорость реакции значительно увеличивается.

Если нагревание применять нельзя (улетучивание одного из веществ, разложение и т. д.), для ускорения реакции увеличивают концентрации реагирующих веществ. На скорость реакции может оказывать влияние введение в раствор катализатора.

Реакцию окисления перманганатом щавелевой кислоты можно каталитически ускорить прибавлением МnSО 4 , роль которого сводится к следующему:

Образовавшийся диоксид марганца окисляет щавелевую кислоту, восстанавливаясь до марганца (III):

Таким образом, прибавленный к раствору марганец (II) полностью регенерируется и на реакцию не расходуется, но сильно ускоряет реакцию. В перманганатометрии одним из продуктов реакции окисления щавелевой кислоты являются ионы Мn 2+ , которые по мере образования в растворе ускоряют процесс реакции. Такие реакции называют автокаталитическими. Первые капли перманганата при титровании горячего подкисленного раствора щавелевой кислоты обесцвечиваются медленно. По мере образования небольшого количества ионов Мn 2+ дальнейшее обесцвечивание перманганата происходит практически мгновенно, так как образовавшиеся ионы Мn 2+ играют роль катализатора.

Окислительно-восстановительное титрование

К окислительно-восстановительным относятся химические процессы, которые сопровождаются изменением степени окисления атомов веществ, участвующих в реакции.

Вещества, атомы которых в ходе реакции понижают степень окисления благодаря присоединению электронов, называются окислителями, т.е. они являются акцепторами электронов. При этом окислители сами восстанавливаются. Восстановители, являясь донорами электронов, окисляются.

Продукт восстановления окислителя называется восстановленной формой, а продукт окисления восстановителя – его окисленной формой. Окислитель со своей восстановленной формой составляет полупару окислительно-восстановительной системы, а другой полупарой является восстановитель со своей окисленной формой. Таким образом, восстановитель с окисленной формой и окислитель со своей восстановленной формой составляют две полупары (редокс пары) окислительно-восстановительной системы.

Все ОВ процессы (редокс реакции) можно разделить на три типа

а) межмолекулярные, когда в ходе реакции ОВ переход электронов происходит между частицами различных веществ. Например

В данной реакции роль окислителя в присутствии Н 3 О + играют ионы а в качестве восстановителя выступают ионы

б) дисмутационные (диспропорционирования), в ходе которых переход электронов происходит между частицами одного и того же вещества. В результате диспропорционирования степень окисления одной части атомов понижается за счет другой части таких же атомов, степень окисления которых становится больше.

Например:

в) внутримолекулярные, в которых переход электронов происходит между двумя атомами, входящими в состав одной и той же частицы вещества, приводящие к разложению вещества на более простые.