На вершине экологической пирамиды находятся. Пирамида численности

Экологическая пирамида - это графическое изображение потерь энергии в цепях питания.

Цепи питания - это устойчивые цепи взаимосвязанных видов, последовательно извлекающих материалы и энергию из исходного пищевого вещества, сложившиеся в ходе эволюции живых организмов и биосферы в целом. Они составляют трофическую структуру любого биоценоза, по которой осуществляются перенос энергии и круговороты веществ. Пищевая цепь состоит из ряда трофических уровней, последовательность которых соответствует потоку энергии.

Первичным источником энергии в цепях питания является солнечная энергия. Первый трофический уровень - продуценты (зеленые растения) - используют солнечную энергию в процессе фотосинтеза, создавая первичную продукцию любого биоценоза. При этом только 0,1% солнечной энергии используется в процессе фотосинтеза. Эффективность, с которой зеленые растения ассимилируют солнечную энергию, оценивается величиной первичной продуктивности. Более половины энергии, связанной при фотосинтезе, тут же расходуется растениями в процессе дыхания, остальная часть энергии переносится далее по пищевым цепям.

При этом действует важная закономерность, связанная с эффективностью использования и превращения энергии в процессе питания. Сущность ее заключается в следующем: количество энергии, расходуемой на поддержание собственной жизнедеятельности, в цепях питания растет от одного трофического уровня к другому, а продуктивность падает.

Фитобиомасса используется в качестве источника энергии и материала для создания биомассы организмов второго

трофического уровня потребителей первого порядка - травоядных животных. Обычно продуктивность второго трофического уровня составляет не более 5 - 20% (10%) предыдущего уровня. Это находит отражение в соотношении на планете биомасс растительного и животного происхождения. Объем энергии, необходимой для обеспечения жизнедеятельности организма, растет с повышением уровня морфофункциональной организации. Соответственно, количество биомассы, создаваемой на более высоких трофических уровнях, снижается.

Экосистемы очень разнообразны по относительной скорости создания и расходования как чистой первичной продукции, так и чистой вторичной продукции на каждом трофическом уровне. Однако всем без исключения экосистемам свойственны определенные соотношения первичной и вторичной продукции. Всегда количество растительного вещества, служащего основой цепи питания, в несколько раз (около 10 раз) больше, чем общая масса растительноядных животных, а масса каждого последующего звена пищевой цепи, соответственно, пропорционально изменяется.

Прогрессивное снижение ассимилированной энергии в ряду трофических уровней находит отражение в структуре экологических пирамид.


Снижение количества доступной энергии на каждом последующем трофическом уровне сопровождается снижением биомассы и численности особей. Пирамиды биомассы и численности организмов для данного биоценоза повторяют в общих чертах конфигурацию пирамиды продуктивности.

Графически экологическую пирамиду изображают в виде нескольких прямоугольников одинаковой высоты, но разной длины. Длина прямоугольника уменьшается от нижнего к верхнему соответственно уменьшению продуктивности на последующих трофических уровнях. Нижний треугольник самый большой по длине и соответствует первому трофическому уровню - продуцентам, второй - приблизительно в10 раз меньше и соответствует второму трофическому уровню - растительноядным животным, потребителям первого порядка и т.д.

Скорость создания органического вещества не определяет его суммарные запасы, т.е. общую массу организмов каждого трофического уровня. Наличная биомасса продуцентов и консументов в конкретных экосистемах зависит от того, как соотносятся между собой темпы накопления органического вещества на определенном трофическом уровне и передачи его на вышестоящий, т.е. насколько сильно выедание образовавшихся запасов. Важную роль при этом имеет скорость воспроизведения основных генераций продуцентов и консументов.

В большинстве наземных экосистем, как уже говорилось, действует также правило биомасс, т.е. суммарная масса растений оказывается больше, чем биомасса всех травоядных, а масса травоядных превышает массу всех хищников.

Следует различать количественно продуктивность, - а именно годовой прирост растительности - и биомассу. Разница между первичной продукцией биоценоза и биомассой определяет масштабы выедания растительной массы. Даже для сообществ с преобладанием травянистых форм, скорость воспроизводства биомассы у которых достаточно велика, животные используют до 70% годового прироста растений.

В тех трофических цепях, где передача энергии осуществляется через связи «хищник - жертва», часто наблюдаются пирамиды численности особей: общее число особей, участвующих в цепях питания, с каждым звеном уменьшается. Это связано еще и с тем, что хищники, как правило, крупнее своих жертв. Исключение из правил пирамиды численности составляют случаи, когда мелкие хищники живут за счет групповой охоты на крупных животных.

Все три правила пирамиды - продуктивности, биомассы и численности - выражают энергетические отношения в экосистемах. При этом пирамида продуктивности имеет универсальный характер, а пирамиды биомассы и численности проявляются в сообществах с определенной трофической структурой.

Знание законов продуктивности экосистем, возможность количественного учета потока энергии имеют важное практическое значение. Первичная продукция агроценозов и эксплуатация человеком природных сообществ - основной источник пищи для человека. Важное значение имеет и вторичная продукция биоценозов, получаемая за счет промышленных и сельскохозяйственных животных, как источник животного белка. Знание законов распределения энергии, потоков энергии и вещества в биоценозах, закономерностей продуктивности растений и животных, понимание пределов допустимого изъятия растительной и животной биомассы из природных систем позволяют правильно строить отношения в системе «общество - природа».

Связи при которых одни организмы поедают другие организмы или их останки или выделения (экскременты) называются трофическими (трофе - питание, пища, гр.) . При этом пищевые взаимоотношения между членами экосистемы выражаются через трофические (пищевые) цепи . Примерами таких цепей могут служить:

· ягель → олень → волк (экосистема тундры);

· трава → корова → человек (антропогенная экосистема);

· микроскопические водоросли (фитопланктон) → жучки и дафнии (зоопланктон) → плотва → щука → чайки (водная экосистема).

Воздействие на цепи питания с целью их оптимизации и получения большей или лучшей по качеству продукции не всегда бывают удачны. Так широко известен из литературы пример с завозом коров в Австралию. До этого природными пастбищами пользовались преимущественно кенгуру, экскременты которых успешно осваивались и перерабатывались австралийским навозным жуком. Коровьи экскременты австралийским жуком не осваивались, в результате чего началась постепенная деградация пастбищ. Для прекращения этого процесса пришлось завезти в Австралию европейского навозного жука.

Тpофические или пищевые цепи могут быть пpедставлены в фоpме пиpамиды. Численное значение каждой ступени такой пиpамиды может быть выpажена числом особей, их биомассой или накопленной в ней энергией.

В соответствии с законом пирамиды энергий Р.Линдемана и правила десяти процентов , с каждой ступени на последующую ступень переходит приблизительно 10 % (от 7 до 17 %) энергии или вещества в энергетическом выражении (рис.3.7). Заметим, что на каждом последующем уровне при снижении количества энергии ее качество возрастает, т.е. способность совершать работу единицы биомассы животного в соответствующее число раз выше, чем такой же биомассы растений.

Ярким примером является трофическая цепь открытого моря, представленная планктоном и китами. Масса планктона рассеяна в океанической воде и, при биопродуктивности открытого моря менее 0,5 г/м2 сут-1, количество потенциальной энергии в кубическом метре океанической воды бесконечно мало в сравнении с энергией кита, масса которого может достигать нескольких сотен тонн. Как известно, китовый жир - это высококалорийный продукт, который использовали даже для освещения.

Рис.3.7. Пиpамидапеpедачиэнеpгии по пищевой цепи (по Ю.Одуму)

В деструкции органики тоже наблюдается соответствующая последовательность: так около 90 % энергии чистой первичной продукции освобождают микроорганизмы и грибы, менее 10 % - беспозвоночные животные и менее 1 % - позвоночные животные, являющиеся конечными косументами. В соответствии с последней цифрой сформулировано правило одного процента : для стабильности биосферы в целом доля возможного конечного потребления чистой первичной продукции в энергетическом выражении не должно превышать 1%.

Опираясь на пищевую цепь, как основу функционирования экосистемы, можно также объяснить случаи накопления в тканях некоторых веществ (например синтетических ядов), которые по мере их движения по трофической цепи не участвуют в нормальном обмене веществ организмов. Согласно правила биологического усиления происходит примерно десятикратное увеличение концентрации загрязнителя при переходе на более высокий уровень экологической пирамиды.

В частности, казалось бы незначительное повышенное содержания радионуклидов в речной воде на первом уровне трофической цепи осваивается микpооpганизмами и планктоном, затем концентpиpуется в тканях рыб и достигает максимальных значений у чаек. Их яйца имеют уровень радионуклидов в 5000 pаз больший по сравнению с фоновым загрязнением.

Видовой состав организмов обычно изучается на уровне популяции .

Напомним, что популяцией называется совокупность особей одного вида, населяющих одну территорию, имеющих общий генофонд и возможность свободно скрещиваться. В общем случае, та или иная популяция может находиться в пределах некоторой экосистемы, но может pаспpостpаняться и за границы. Hапpимеp, известна и охраняется популяция чеpношапошного сурка хребта Туоpа-Сис, занесенного в Красную Книгу. Данная популяция не ограничивается этим хребтом, но пpостиpается и южнее в пределы Веpхоянскихгоp в Якутии.

Среда, в которой обычно встречается изучаемый вид, называется его местообитанием.

Как правило, экологическую нишу занимает один какой-то вид или его популяция. При совпадающих требованиях к окружающей среде и пищевым pесуpсам, два вида неизменно вступают в конкурентную борьбу, которая обычно заканчивается вытеснением одного из них. Подобная ситуация известна в системной экологии, как принцип Г.Ф. Гаузе , который гласит, что два вида не могут существовать в одной и той же местности, если их экологические потребности идентичны, т.е. если они занимают одну и ту же нишу. Соответственно, система взаимодействующих, диффеpенциpованных по экологическим нишам популяций, дополняющих друг друга в большей мере, нежели конкуpиpующих между собой за использование пpостpанства, времени и pесуpсов, называется сообществом (ценозом).

Белый медведь не может обитать в таежных экосистемах, также как бурый в полярных областях.

Видообразование всегда адаптивно, поэтому по аксиоме Ч.Дарвина каждый вид адаптирован к строго определенной, специфичной для него совокупности условий существования. При этом организмы размножаются с интенсивностью, обеспечивающей максимально возможное их число (правило максимального "давления жизни " ).

Например, организмы океанического планктона довольно быстро покрывают пространство в тысячи квадратных километров в виде пленки. В.И.Вернадский подсчитал, что скорость продвижения бактерии Фишера размером 10-12 см3 путем размножения по прямой была бы равна около 397 200 м/час - скорость самолета! Однако чрезмерное размножение организмов ограничивается лимитирующими факторами и коррелирует с количеством пищевых ресурсов среды их обитания.

Когда происходит исчезновение видов, прежде всего составленных крупными особями, в итоге меняется вещественно-энергетическая структура цензов. Если энергетический поток, проходящий через экосистему, не меняется, то включаются механизмы экологического дублирования по принципу : исчезающий или уничтожаемый вид в рамках одного уровня экологической пирамиды заменяет другой функционально-ценотический, аналогичный. Замена вида идет по схеме: мелкий сменяет крупного, эволюционно ниже организованный более высокоорганизованного, более генетически лабильный менее генетически изменчивого. Так как экологическая ниша в биоценозе не может пустовать, то экологическое дублирование происходит обязательно.

Последовательная смена биоценозов, преемственно возникающая на одной и той же территории под воздействием природных факторов или воздействия человека, называется сукцессией (сукцессио - преемственность, лат.) . Например, после лесного пожара горельник в течение многих лет заселяется сначала травами, потом кустарником, затем лиственными деревьями и в конечном итоге хвойным лесом. При этом последовательные сообщества, сменяющие друг друга, называются сериями или стадиями. Конечным результатом сукцессии будет состояние стабилизированнной экосистемы - климакс (климакс - лестница, "зрелая ступень", гр.) .

Сукцессия, начинающаяся на участке, прежде не занятом, называется первичной . К таковым относятся поселения лишайников на камнях, которые впоследствие заменят мхи, травы и кустарники (рис.3.8). Если сообщество развивается на месте уже существовавшего (например, после пожара или раскорчевки, устройства пруда или водохранилища), то говорят о вторичной сукцессии. Конечно, скорость сукцессий будет различной. Для первичных сукцессий могут потребоваться сотни или тысячи лет, а вторичные протекают быстрее.

Все популяции продуцентов, консументов и гетеротрофов тесно взаимодействуют через трофические цепи и таким образом поддерживают структуру и целостность биоценозов, согласовывают потоки энергии и вещества, обуславливают регуляцию окружающей их среды. Вся совокупность тел живых организмов населяющих Землю физико-химически едина, вне зависимости от их систематической принадлежности и называется живым веществом (закон физико-химического единства живого вещества В.И.Вернадского ). Масса живого вещества сравнительно мала и оценивается величиной 2,4-3,6*1012 т (в сухом весе). Если ее распределить по всей поверхности планеты, то получится слой всего в полтора сантиметра. По В.И.Вернадскому эта "пленка жизни", составляющая менее 10-6 массы других оболочек Земли, является "одной из самых могущественных геохимических сил нашей планеты".

Главный процесс, который происходит во всех экосистемах, - это перенос и круговорот вещества или энергии. При этом потери неизбежны. Величина этих потерь от уровня к уровню - вот что отражают правила экологических пирамид.

Немного академических терминов

Обмен вещества и энергии - это направленный поток в цепочке продуценты - консументы. Проще говоря, поедание одних организмов другими. При этом выстраивается цепочка или последовательность организмов, которые как звенья в цепи связаны взаимоотношениями «пища - потребитель». Эту последовательность называют трофической, или пищевой цепочкой. А звенья в ней - трофические уровни. Первый уровень цепочки - это продуценты, (растения), ведь только они могут образовывать органические вещества из неорганических. Следующие звенья - консументы (животные) различных порядков. Травоядные - консументы 1 порядка, а хищники, питающиеся травоядными, будут консументами 2 порядка. Следующим звеном в цепи станут редуценты - организмы, пищей которых являются остатки жизнедеятельности или трупы живых организмов.

Графические пирамиды

Британский эколог Чарльз Элтон (1900-1991) в 1927 году, на основании анализа количественных изменений в трофических цепях, ввел в биологию понятие экологических пирамид как графической иллюстрации соотношений в экосистеме продуцентов и консументов. Пирамиду Элтона изображают в виде треугольника, поделенного на количество звеньев в цепи. Или же в виде прямоугольников, стоящих друг на друге.

Закономерности пирамиды

Ч. Элтон проанализировал количество организмов в цепочках и установил, что растений всегда больше, чем животных. Причем соотношение уровней в количественном измерении всегда одинаково - уменьшение происходит на каждом следующем уровне, и это объективный вывод, что и отражают правила экологических пирамид.

Правило Элтона

Это правило гласит, что количество особей в последовательной уменьшается от уровня к уровню. Правила экологической пирамиды - это количественное соотношение продукции всех уровней конкретной цепи питания. Оно говорит, что показатель уровня цепи приблизительно в 10 раз будет меньше такого показателя на предыдущем уровне.

Приведенным простой пример, который расставит все точки над «и». Рассмотрим трофическую цепочку водоросли - беспозвоночные рачки - сельдь - дельфин. Сорокакилограммовому дельфину, чтобы прожить, необходимо съесть 400 килограммов сельди. А для того, чтоб существовали эти 400 килограммов рыбы, необходимо порядка 4 тонн их пищи - беспозвоночных рачков. Для образования 4 тонн рачков необходимо уже 40 тонн водорослей. Вот что отражают правила экологической пирамиды. И только в таком соотношении эта экологическая структура будет устойчивой.

Виды экопирамид

Исходя из критерия, который будет учитываться при оценке пирамид, выделяют:

  • Числовые.
  • Оценки биомассы.
  • Затрат энергии.

Во всех случаях правило экологической пирамиды отражает уменьшение главного критерия оценивания в 10 раз.

Число особей и трофические ступени

В пирамиде чисел учитывается количество организмов в что отражено правилом экологической пирамиды. И пример с дельфином полностью подходит к характеристике данного типа пирамид. Но тут есть и исключения - экосистема леса с цепочкой растения - насекомые. Пирамида станет перевернутой (огромное количество насекомых, кормящихся на одном дереве). Именно поэтому пирамиду чисел считают не самой информативной и показательной.

А что в остатке?

Пирамида биомассы в качестве критерия оценивания использует сухую (реже - сырую) массу особей одного уровня. Единицы измерения - грамм/метр квадратный, килограмм/гектар или же грамм/метр кубический. Но и тут бывают исключения. Правила экологических пирамид, что отражают уменьшение биомассы консументов по отношению к биомассе продуцентов, выполняются для биоценозов, где и те и другие крупные и имеют долгий жизненный цикл. Но для водных систем пирамида снова может оказаться перевернутой. Например, в морях биомасса зоопланктона, питающегося водорослями, иногда в 3 раза больше биомассы самого растительного планктона. спасает высокая скорость размножения фитопланктона.

Поток энергии - самый точный показатель

Пирамиды энергии показывают скорость прохождения пищи (ее массы) по трофическим уровням. Закон пирамиды энергии сформулировал выдающийся эколог из Америки Раймонд Линдеман (1915-1942), уже после его смерти в 1942 году он вошел в биологию как правило десяти процентов. Согласно нему, на каждый последующий уровень переходит 10% энергии с предыдущего, остальные 90% - это потери, которые идут на поддержку жизнедеятельности организма (дыхание, теплорегуляцию).

Значение пирамид

Что отражают правила экологических пирамид, мы разобрали. Но зачем нам эти знания? Пирамиды чисел и биомассы позволяют решить некоторые практические задачи, так как они описывают статическое и устойчивое состояние системы. Например, их используют при расчете допустимых величин вылова рыбы или подсчета количества животных для отстрела, чтобы не нарушить устойчивость экосистемы и определить максимальный размер той или иной популяции особей для данной экосистемы во всей ее совокупности. А пирамида энергий дает четкое представление об организации функциональных сообществ, позволяет сравнить различные экосистемы по их продуктивности.

Теперь читатель не растеряется, получив задание типа «опишите, что отражают правила экологических пирамид», и смело ответит, что это потери вещества и энергии в конкретной трофической цепочке.

Эко­ло­ги­че­ские пи­ра­ми­ды - это гра­фи­че­ские мо­де­ли, отража­ю­щие число осо­бей (пи­ра­ми­да чисел), ко­ли­че­ство их био­мас­сы (пи­ра­ми­да био­масс) или за­клю­чён­ной в них энер­гии (пи­ра­ми­да энер­гии) на каж­дом тро­фи­че­ском уров­не и ука­зы­ва­ю­щие на по­ни­же­ние всех по­ка­за­те­лей с повыше­ни­ем трофи­че­ско­го уров­ня.

Различают три типа экологических пирамид: энергии, биомассы и численности. О пирамиде энергии мы говорили в предыдущем разделе «Перенос энергии в экосистемах». Соотношение живого вещества на разных уровнях подчиняется в целом тому же правилу, что и соотношение поступающей энергии: чем выше уровень, тем ниже общая биомасса и численность составляющих её организмов.

Пирамида биомассы

Пирамиды биомассы, так же, как и численности, могут быть не только прямыми, но и перевернутыми, свойственные водным экосистемам.

Пирамида экологическая (трофическая) графическое изображение количественных соотношений между трофическими уровнями биоценоза -продуцентами, консументами (отдельно каждого уровня) и редуцентами, выраженное в их численности (пирамида чисел), биомассе (пирамида биомасс) или скорости нарастания биомассы (пирамида энергий).

Пирамида биомасс - соотношение между продуцентами, консументами и редуцентами в экосистеме, выраженное в их массе и изображенное в виде трофической модели.

Пирамиды биомассы, так же, как и численности, могут быть не только прямыми, но и перевернутыми (рис. 12.38). Перевернутые пирамиды биомассы свойственны водным экосистемам, в которых первичные продуценты, например, фитопланктонные водоросли, очень быстро делятся, а их потребители - зоопланк-тонные ракообразные - гораздо крупнее, но имеют длительный цикл воспроизводства. В частности, это относится к пресноводной среде, где первичная продуктивность обеспечивается микроскопическими организмами, скорость обмена веществ которых повышена, т. е. биомасса мала, производительность велика.

Пирамиды биомассы представляют более фундаментальный интерес, так как в них устранен «физический» фактор и четко показаны количественные соотношения биомасс. Если организмы не слишком сильно различаются по размеру, то, обозначив на трофических уровнях общую массу особей, можно получить ступенчатую пирамиду. Но если организмы низших уровней в среднем мельче организмов высших уровней, то имеет место обращенная пирамида биомассы. Например, в экосистемах с очень мелкими продуцентами и крупными консументами общая масса последних может быть в любой данный момент выше общей массы продуцентов. Для пирамид биомассы можно сделать несколько обобщений.

Пирамида биомасс показывает изменение биомасс на каждом следующем трофическом уровне: для наземных экосистем пирамида биомасс сужается кверху, для экосистемы океана - имеет перевернутый характер (сужается книзу), что связано с быстрым потреблением фитопланктона консументами.

Пирамида численности

Пирамида численности — экологическая пирамида, отражающая число особей на каждом пищевом уровне. Пирамида чисел не всегда дает четкое понятие о структуре пищевых цепей, так как в ней не учитываются размеры и масса особей, продолжительность жизни, интенсивность обмена веществ по главная тенденция - уменьшение числа особей от звена к звену — в большинстве случаев прослеживается.

Так, в степной экосистеме была установлена следующая численность особей: продуценты — 150 000, травоядные консументы 20 000, плотоядные консументы 9000 экз/ар (Одум, 1075), что в пересчете на гектар составит цифры в 100 раз большие. Биоценоз луга характеризуемся следующей численностью особей на площади 4 тыс. м2: продуцентов — 5 842 424, растительноядных консументов I порядка — 708 024, плотоядных консументов II порядка - 35 490, плотоядных консументов III порядка — 3.

Перевёрнутые пирамиды

Если скорость размножения популяции жертвы высока, то даже при низкой биомассе такая популяция может быть достаточным источником пищи для хищников, имеющих более высокую биомассу, но низкую скорость размножения. По этой причине пирамиды численности могут быть перевернутыми, т.е. плотность организмов в данный конкретный момент времени на низком трофическом уровне может быть ниже, чем плотность организмов на высоком уровне. Например, на одном дереве может жить и кормиться множество насекомых (перевернутая пирамида численности).

Перевернутая пирамида биомасс свойственна морским экосистемам, где первичные продуценты (фитопланктонные водоросли) очень быстро делятся (имеют большой репродуктивный потенциал и быструю смену поколений). В океане за год может смениться до 50 поколений фитопланктона. Потребители фитопланктона гораздо крупнее, но размножаются значительно медленнее. За то время, пока хищные рыбы (а тем более моржи и киты) накопят свою биомассу, сменится множество поколений фитопланктона, суммарная биомасса которых намного больше.

Пирамидами биомасс не учитывается продолжительность существования поколений особей на разных трофических уровнях и скорость образования и выедания биомассы. Вот почему универсальным способом выражения трофической структуры экосистем являются пирамиды скоростей образования живого вещества, т.е. продуктивности. Их обычно называют пирамидами энергий, имея в виду энергетическое выражение продукции.

Министерство образования и науки Российской федерации

Национальный исследовательский

Иркутский государственный технический университет

Заочно-вечерний факультет

Кафедра общеобразовательных дисциплин


Контрольная работа по Экологии


выполнил: Яковлев В.Я

№ зачетной книжки: 13150837

группа: ЭПбз-13-2


Иркутск 2015


1. Дайте понятие экологического фактора. Классификация экологических факторов

2. Экологические пирамиды и их характеристика

3. Что называют биологическим загрязнением окружающей среды?

4. Какие существуют виды ответственности должностных лиц за экологические нарушения?

Список литературы


1. Дайте понятие экологического фактора. Классификация экологических факторов


Среда обитания - это та часть природы, которая окружает живой организм и с которой он непосредственно взаимодействует. Составные части и свойства среды многообразны и изменчивы. Любое живое существо живет в сложном меняющемся мире, постоянно приспосабливаясь к нему и регулируя свою жизнедеятельность в соответствии с его изменениями.

Отдельные свойства или части среды, воздействующие на организмы, называются экологическими факторами. Факторы среды многообразны. Они могут быть необходимы или, наоборот, вредны для живых существ, способствуют или препятствуют их выживанию и размножению. Экологические факторы имеют разную природу и специфику действия.

Абиотические факторы - температура, свет, радиоактивное излучение, давление, влажность воздуха, солевой состав воды, ветер, течения, рельеф местности - это все свойства неживой природы, которые прямо или косвенно влияют на живые организмы. Среди них различают:

Физические факторы - такие факторы, источником которых служит физическое состояние или явление (например, температура, давление, влажность, движение воздуха и др.).

Химические факторы - такие факторы, которые обусловлены химическим составом среды (соленость воды, содержание кислорода в воздухе и др.).

Эдафические факторы (почвенные) - совокупность химических, физических, механических свойств почв и горных пород, оказывающих воздействие как на организмы, для которых они являются средой обитания, так и на корневую систему растений (влажность, структура почвы, содержание биогенных элементов и др.).

Биотические факторы - это все формы воздействия живых существ друг на друга. Каждый организм постоянно испытывает на себе прямое или косвенное влияние других, вступает в связь с представителями своего вида и других видов - растениями, животными, микроорганизмами - зависит от них и сам оказывает на них воздействие. Окружающий органический мир - составляющая часть среды каждого живого существа.

Антропогенные факторы - это все формы деятельности человеческого общества, которые приводят к изменению природы, как среды обитания других видов, или непосредственно сказываются на их жизни. В ходе истории человечества, развитие сначала охоты, а затем сельского хозяйства, промышленности, транспорта сильно изменило природу нашей планеты. Значение антропогенных воздействий на весь живой мир Земли продолжает стремительно возрастать.

Выделяют следующие группы антропогенных факторов:

Изменение структуры земной поверхности;

Изменение состава биосферы, круговорота и баланса входящего в нее вещества;

Изменение энергетического и теплового баланса отдельных участков и регионов;

Изменения, вносимые в биоту.

Условия существования - это совокупность необходимых для организма элементов среды, с которыми он находится в неразрывном единстве и без которых существовать не может. Элементы среды, необходимые организму или отрицательно на него воздействующие, называются экологическими факторами. В природе эти факторы действуют не изолировано друг от друга, а в виде сложного комплекса. Комплекс экологических факторов, без которых организм существовать не может, и представляет собой условия существования этого организма.

Все приспособления организмов к существованию в различных условиях выработались исторически. В результате сформировались специфичные для каждой географической зоны группировки растений и животных.

Экологические факторы:

Элементарные - свет, тепло, влага, пища и так далее;

Комплексные;

Антропогенные;

Влияние экологических факторов на живые организмы характеризуется некоторыми количественными и качественными закономерностями. Немецкий агрохимик Ю. Либих, наблюдая за влиянием на растения химических удобрений, обнаружил, что ограничение дозы любого из них ведет к замедлению роста. Эти наблюдения позволили ученому сформулировать правило, которое носит название закона минимума (1840 г.).


2. Экологические пирамиды и их характеристика


Экологическая пирамида - графические изображения соотношения между продуцентами и консументами всех уровней (травоядных, хищников; видов, питающихся другими хищниками) в экосистеме.

Схематически изображать эти соотношения предложил американский зоолог Чарльз Элтон в 1927 году.

При схематическом изображении каждый уровень показывают в виде прямоугольника, длина или площадь которого соответствует численным значениям звена пищевой цепи (пирамида Элтона), их массе или энергии. Расположенные в определенной последовательности прямоугольники создают различные по форме пирамиды.

Основанием пирамиды служит первый трофический уровень - уровень продуцентов, последующие этажи пирамиды образованы следующими уровнями пищевой цепи - консументами различных порядков. Высота всех блоков в пирамиде одинакова, а длина пропорциональна числу, биомассе или энергии на соответствующем уровне.

Экологические пирамиды различают в зависимости от показателей, на основании которых строится пирамида. При этом для всех пирамид установлено основное правило, согласно которому в любой экосистеме больше растений, чем животных, травоядных, чем плотоядных, насекомых, чем птиц.

На основе правила экологической пирамиды можно определить или рассчитать количественные соотношения разных видов растений и животных в естественных и искусственно создаваемых экологических системах. Например, 1 кг массы морского зверя (тюленя, дельфина) нужно 10 кг съеденной рыбы, а этим 10 кг нужно уже 100 кг их корма - водных беспозвоночных, которым в свою очередь для образования такой массы необходимо съедать 1000 кг водорослей и бактерий. В данном случае экологическая пирамида будет устойчива.

Однако, как известно, из каждого правила бывают исключения, которые будут рассмотрены в каждом типе экологических пирамид.


Типы экологических пирамид

Пирамиды чисел - на каждом уровне откладывается численность отдельных организмов

Пирамида чисел отображает отчетливую закономерность, обнаруженную Элтоном: количество особей, составляющих последовательный ряд звеньев от продуцентов к консументам, неуклонно уменьшается (рис.3).

Например, чтобы прокормить одного волка, необходимо по крайней мере несколько зайцев, на которых он мог бы охотиться; чтобы прокормить этих зайцев, нужно довольно большое количество разнообразных растений. В данном случае пирамида будет иметь вид треугольника с широким основанием суживающимся кверху.

Однако подобная форма пирамиды чисел характерна не для всех экосистем. Иногда они могут быть обращенными, или перевернутыми. Это касается пищевых цепей леса, когда продуцентами служат деревья, а первичными консументами - насекомые. В этом случае уровень первичных консументов численно богаче уровня продуцентов (на одном дереве кормится большое количество насекомых), поэтому пирамиды чисел наименее информативны и наименее показательны, т.е. численность организмов одного трофического уровня в значительной степени зависит от их размеров.


Пирамиды биомасс - характеризует общую сухую или сырую массу организмов на данном трофическом уровне, например, в единицах массы на единицу площади - г/м2, кг/га, т/км2 или на объем - г/м3 (рис.4)

Обычно в наземных биоценозах общая масса продуцентов больше, чем каждого последующего звена. В свою очередь, общая масса консументов первого порядка больше, нежели консументов второго порядка и т.д.

В данном случае (если организмы не слишком различаются по размерам) пирамида также будет иметь вид треугольника с широким основанием суживающимся кверху. Однако и из этого правила имеются существенные исключения. Например, в морях биомасса растительноядного зоопланктона существенно (иногда в 2-3 раза) больше биомассы фитопланктона, представленного преимущественно одноклеточными водорослями. Это объясняется тем, что водоросли очень быстро выедаются зоопланктоном, но от полного выедания их предохраняет очень высокая скорость деления их клеток.

В целом для наземных биогеоценозов, где продуценты крупные и живут сравнительно долго, характерны относительно устойчивые пирамиды с широким основанием. В водных же экосистемах, где продуценты невелики по размеру и имеют короткие жизненные циклы, пирамида биомасс может быть обращенной, или перевернутой (острием направлена вниз). Так, в озерах и морях масса растений превышает массу потребителей только в период цветения (весной), а в остальное время года может создаться обратное положение.

Пирамиды чисел и биомасс отражают статику системы, т. е. характеризуют количество или биомассу организмов в определенный промежуток времени. Они не дают полной информации о трофической структуре экосистемы, хотя позволяют решать ряд практических задач, особенно связанных с сохранением устойчивости экосистем.

Пирамида чисел позволяет, например, рассчитывать допустимую величину улова рыбы или отстрела животных в охотничий период без последствий для нормального их воспроизведения.


Пирамиды энергии - показывает величину потока энергии или продуктивности на последовательных уровнях (рис.5).

В противоположность пирамидам чисел и биомассы, отражающим статику системы (количество организмов в данный момент), пирамида энергии отражая картину скоростей прохождения массы пищи (количества энергии) через каждый трофический уровень пищевой цепи, дает наиболее полное представление о функциональной организации сообществ.

На форму этой пирамиды не влияют изменения размеров и интенсивности метаболизма особей, и если учтены все источники энергии, то пирамида всегда будет иметь типичный вид с широким основанием и суживающейся верхушкой. При построении пирамиды энергии в ее основание часто добавляют прямоугольник, показывающий приток солнечной энергии.

В 1942 г. американский эколог Р. Линдеман сформулировал закон пирамиды энергий (закон 10 процентов), согласно которому с одного трофического уровня через пищевые цепи на другой трофический уровень переходит в среднем около 10% поступившей на предыдущий уровень экологической пирамиды энергии. Остальная часть энергии теряется в виде теплового излучения, на движение и т.д. Организмы в результате процессов обмена теряют в каждом звене пищевой цепи около 90% всей энергии, которая расходуется на поддержание их жизнедеятельности.

Если заяц съел 10 кг растительной массы, то его собственная масса может увеличиться на 1 кг. Лисица или волк, поедая 1 кг зайчатины, увеличивают свою массу уже только на 100 г. У древесных растений эта доля много ниже из-за того, что древесина плохо усваивается организмами. Для трав и морских водорослей эта величина значительно больше, поскольку у них отсутствуют трудноусвояемые ткани. Однако общая закономерность процесса передачи энергии остается: через верхние трофические уровни ее проходит значительно меньше, чем через нижние.

Рассмотрим превращение энергии в экосистеме на примере простой пастбищной трофической цепи, в которой имеется всего три трофических уровня.

уровень - травянистые растения,

уровень - травоядные млекопитающие, например, зайцы

уровень - хищные млекопитающие, например, лисы

Питательные вещества создаются в процессе фотосинтеза растениями, которые из неорганических веществ (вода, углекислый газ, минеральные соли и т.д.) с использованием энергии солнечного света образуют органические вещества и кислород, а также АТФ. Часть электромагнитной энергии солнечного излучения при этом переходит в энергию химических связей синтезируемых органических веществ.

Все органическое вещество, создаваемое в процессе фотосинтеза называется валовой первичной продукцией (ВПП). Часть энергии валовой первичной продукции расходуется на дыхание, в результате чего образуется чистая первичная продукция (ЧПП), которая и является тем самым веществом, которое поступает на второй трофический уровень и используется зайцами.

Пусть ВПП составляет 200 условных единиц энергии, а затраты растений на дыхание (R) - 50%, т.е. 100 условных единиц энергии. Тогда чистая первичная продукция будет равна: ЧПП = ВПП - R (100 = 200 - 100), т.е. на второй трофический уровень к зайцам поступит 100 условных единиц энергии.

Однако, в силу разных причин зайцы способны потребить лишь некоторую долю ЧПП (в противном случае исчезли бы ресурсы для развития живой материи), существенная же ее часть, в виде отмерших органических остатков (подземные части растений, твердая древесина стеблей, ветвей и т.д.) не способна поедаться зайцами. Она поступает в детритные пищевые цепи и (или) подвергается разложению редуцентами (F). Другая часть идет на построение новых клеток (численность популяции, прирост зайцев - Р) и обеспечение энергетического обмена или дыхания (R).

В этом случае, согласно балансовому подходу, балансовое равенство расхода энергии (С) будет выглядеть следующим образом: С = Р + R + F, т.е. поступившая на второй трофический уровень энергия будет израсходована, согласно закону Линдемана, на прирост популяции - Р - 10%, остальные 90% будут израсходованы на дыхание и удаление неусвоенной пищи.

Таким образом, в экосистемах с повышением трофического уровня происходит быстрое уменьшение энергии, накапливаемой в телах живых организмов. Отсюда ясно почему каждый последующий уровень всегда будет меньше предыдущего и почему цепи питания обычно не могут иметь более 3-5 (редко 6) звеньев, а экологические пирамиды не могут состоять из большого количества этажей: к конечному звену пищевой цепи так же, как и к верхнему этажу экологической пирамиды, будет поступать так мало энергии, что ее не хватит в случае увеличения числа организмов.

Такая последовательность и соподчиненность связанных в форме трофических уровней групп организмов представляет собой потоки вещества и энергии в биогеоценозе, основу его функциональной организации.


3. Что называют биологическим загрязнением окружающей среды?


Экология является теоретической основой рационального природоиспользования, ей принадлежит ведущая роль в разработке стратегии взаимоотношений природы и человеческого общества. Промышленная экология рассматривает нарушение природного равновесия в результате хозяйственной деятельности. При этом наиболее значительным по своим последствиям является загрязнение окружающей среды. Под термином «окружающая среда» принято понимать все то, что прямо или косвенно воздействует на жизнь и деятельность человека.

По-новому следует оценивать и роль дрожжей в природных экосистемах. Например, считавшиеся долго безвредными комменсалами многие эпифитные дрожжи, обильно обсеменяющие зеленые части растений, могут оказаться не такими уж «невинными», если учесть, что они представляют собой лишь гаплоидную стадию в жизненном цикле организмов, близко родственных фитопатогенным головневым или ржавчинным грибам. И, наоборот, патогенные для человека дрожжи, вызывающие опасные и трудноизлечимые болезни - кандидоз и криптококкоз - в природе имеют сапротрофную стадию и легко выделяются из мертвых органических субстратов. Из этих примеров видно, что для понимания экологических функций дрожжей необходимо изучение полных жизненных циклов каждого вида. Обнаружены и автохтонные почвенные дрожжи с особыми функциями, важными для образования почвенной структуры. Неисчерпаемы по многообразию и связи дрожжей с животными, особенно с беспозвоночными.

Загрязнение атмосферы может быть связано с естественными процессами: извержением вулканов, пыльными бурями, лесными пожарами.

Кроме того, атмосфера загрязняется в результате производственной деятельности человека.

Источниками загрязнения воздуха является дымовые выбросы промышленных предприятий. Выбросы бывают организованными и неорганизованными. Выбросы, поступающие из труб промышленных предприятий, является специально направленными, организованными. До того как поступить в трубу, они проходят через очистные сооружения, в которых осуществляется поглощение части вредных веществ. Из окон, дверей, вентиляционных отверстий производственных зданий в атмосферу поступают неорганизованные выбросы. Основными загрязняющими веществами в выбросах являются твердые частицы (пыль, сажа) и газообразные вещества (окись углерода, двуокись серы, окислы азота).

Селекция и идентификация микроорганизмов с полезными для определенного производства свойствами является весьма актуальной с экологической точки работой, так как их использование может интенсифицировать процесс или более полно использовать компоненты субстрата.

Сущность методов биоремедиации, биологической очистки, биопереработки и биомодификации заключается в использовании в окружающей среде различных биологических агентов, в первую очередь микроорганизмов. При этом можно применять как микроорганизмы, полученные традиционными методами селекции, так и созданные с помощью генной инженерии, а также трансгенные растения, которые могут влиять на биологическое равновесие природных экосистем.

В окружающей среде могут присутствовать промышленные штаммы различных микроорганизмов - продуцентов биосинтеза тех или иных веществ, а также продукты их метаболизма, которые выступают как биологический фактор загрязнения. Действие его может заключаться в изменении структуры биоценозов. Косвенные эффекты биологического загрязнения проявляются, например, при использовании антибиотиков и других лекарственных средств в медицине, когда появляются штаммы микроорганизмов, устойчивые к их действию и опасные для внутренней среды человека; в виде осложнений при использовании вакцин и сывороток, содержащих примеси веществ биологического происхождения; как аллергенное и генетическое действие микроорганизмов и продуктов их метаболизма.

Биотехнологические крупнотоннажные производства являются источником эмиссии биоаэрозолей, содержащих клетки непатогенных микроорганизмов, а также продукты их метаболизма. Основные источники биоаэрозолей, содержащих живые клетки микроорганизмов, - стадии ферментации и сепарации, а инактивированных клеток - стадия сушки. При массированном выбросе микробная биомасса, попадая в почву или в водоем, изменяет распределение потоков энергии и вещества в трофических цепях питания и влияет на структуру и функцию биоценозов, снижает активность самоочищения и, следовательно, влияет на глобальную функцию биоты. При этом возможно провоцирование активного развития определенных организмов, в том числе микроорганизмов санитарно-показательных групп.

Динамика интродуцированных популяций и показатели их биотехнологического потенциала зависят от вида микроорганизма, состояния почвенной микробной системы в момент интродукции, этапа микробной сукцессии, дозы внесенной популяции. При этом последствия внедрения микроорганизмов, новых для почвенных биоценозов, могут быть неоднозначными. Вследствие самоочищения элиминируется не всякая интродуцированная в почву микробная популяция. Характер популяционной динамики интродуцируемых микроорганизмов зависит от степени их приспособленности к новым условиям. Неприспособленные популяции погибают, приспособленные сохраняются.

Биологический фактор загрязнения можно определить как совокупность биологических компонентов, воздействие которых на человека и окружающую среду связано с их способностью размножаться в естественных или искусственных условиях, продуцировать биологически активные вещества, а при их попадании или продуктов их жизнедеятельности в окружающую среду оказывать неблагоприятные воздействия на окружающую среду, людей, животных, растения.

Биологические факторы загрязнения (чаще всего микробные) можно классифицировать следующим образом: живые микроорганизмы с природным геномом, не обладающие токсичностью, сапрофиты, живые микроорганизмы с природным геномом, обладающие инфекционной активностью, патогенные и условно-патогенные, вырабатывающие токсины, живые микроорганизмы, получаемые методами генной инженерии (генетически модифицированные микроорганизмы, содержащие чужие гены или новые комбинации генов - ГММО), инфекционные и другие вирусы, токсины биологического происхождения, инактивированные клетки микроорганизмов (вакцины, пыль термически инактивированной биомассы микроорганизмов кормового и пищевого назначения), продукты метаболизма микроорганизмов, органеллы и органические соединения клетки - продукты ее фракционирования.

Целью нашей работы явилось выделение и идентификация дрожжевых микроорганизмов в лаборатории биотехнологии Горского ГАУ, относящихся к первой группе выше перечисленных организмов. Так как это микроорганизмы с природным геномом и не обладающие токсичностью, то их воздействие на окружающую среду весьма органично и не значительно.

Источниками микроорганизмов, включая условно-патогенные и патогенные, являются сточные воды (хозяйственно-фекальные, производственные, городские ливневые стоки). В сельских районах фекальные загрязнения поступают со стоками населенных мест, с пастбищ, загонов для скота и птиц и от диких животных. В процессе обработки сточных вод количество патогенных микроорганизмов в них снижается. Масштабы их действия на окружающую среду незначительны, тем не менее поскольку этот источник эмиссии микробных клеток существует, его необходимо учитывать как фактор загрязнения окружающей среды.

Вода, используемая в процессе выполнения нашей работы для приготовления сред, смывов, обогрева автоклава и термостатов может быть очищена на городских очистных сооружениях вместе с городскими сточными водами аэробным или анаэробным способом.

Биологические загрязнители по экологическим свойствам существенно отличаются от химических. По химическому составу техногенные биологические загрязнения тождественны природным компонентам, они включаются в природный круговорот веществ и трофические цепи питания без аккумулирования в окружающей среде.

Все микробиологические и вирусологические лаборатории должны быть оснащены приемником сточных вод, где собирающиеся стоки перед сбросом в городскую канализацию обязательно обезвреживаются химическим, физическим или биологическим методом либо комбинированным способом.


4. Какие существуют виды ответственности должностных лиц за экологические нарушения?


Эколого-правовая ответственность является разновидностью общеюридической ответственности, но в то же время отличается от иных видов юридической ответственности.

Эколого-правовая ответственность рассматривается в трех взаимосвязанных аспектах:

как государственное принуждение к исполнению требований, предписанных законодательством;

как правоотношение между государством (в лице его органов) и правонарушителями (которые подвергаются санкциям);

как правовой институт, т.е. совокупность юридических норм, различных отраслей права (земельного, горного, водного, лесного, природоохранного и др.). Экологические правонарушения наказываются в соответствии с требованиями законодательства Российской Федерации. Конечная цель экологического законодательства и каждой отдельной его статьи заключается в охране от загрязнения, обеспечении правомерного использования окружающей среды и ее элементов, охраняемых законом. Сферой действия экологического законодательства являются окружающая среда и ее отдельные элементы. Предметом правонарушения признается элемент окружающей среды. Требования закона предполагают установление четкой причинной связи между допущенным нарушением и ухудшением окружающей среды.

Субъектом экологических правонарушений является лицо, достигшее 16-летнего возраста, на которое нормативно-правовыми актами возложены соответствующие должностные обязанности (соблюдение правил охраны окружающей среды, контроль за соблюдением правил), либо любое лицо, достигшее 16-летнего возраста, нарушившее требования экологического законодательства.

Для экологического правонарушения характерно наличие трех элементов:

противоправность поведения;

причинение экологического вреда (или реальная угроза) либо нарушение иных законных прав и интересов субъекта экологического права;

причинная связь между противоправным поведением и нанесенным экологическим вредом или реальной угрозой причинения такого вреда либо нарушением иных законных прав и интересов субъектов экологического права.

Ответственность за экологические правонарушения служит одним из основных средств обеспечения выполнения требований законодательства по охране окружающей среды и использованию природных ресурсов. Эффективность действия данного средства во многом зависит, прежде всего, от государственных органов, уполномоченных применять меры юридической ответственности к нарушителям экологического законодательства. В соответствии с российским законодательством в области охраны окружающей среды должностные лица и граждане за экологические правонарушения несут дисциплинарную, административную, уголовную, гражданско-правовую, материальную ответственность, а предприятия - административную и гражданско-правовую.

Дисциплинарная ответственность наступает за невыполнение планов и мероприятий по охране природы и рациональному использованию природных ресурсов, за нарушение экологических нормативов и иных требований природоохранительного законодательства, вытекающих из трудовой функции или должностного положения. Дисциплинарную ответственность несут должностные лица и иные виновные работники предприятий и организаций в соответствии с положениями, уставами, правилами внутреннего распорядка и другими нормативными актами (ст. 82 Закона «Об охране окружающей природной среды»). К нарушителям в соответствии с Кодексом законов о труде (с изменениями и дополнениями от 25 сентября 1992 г.) могут быть применены следующие дисциплинарные взыскания: замечание, выговор, строгий выговор, увольнение с работы, другие наказания (ст. 135).

Материальная ответственность также регулируется Кодексом законов о труде РФ (ст. 118-126). Такую ответственность несут должностные лица и иные работники предприятия, по вине которых предприятие понесло расходы по возмещению вреда, причиненного экологическим правонарушением.

Применение административной ответственности регулируется как природоохранительным законодательством, так и Кодексом РСФСР об административных правонарушениях 1984 г. (с изменениями и дополнениями). Закон «Об охране окружающей природной среды» расширил перечень составов экологических правонарушений, при совершении которых виновные должностные, физические и юридические лица несут административную ответственность. Такая ответственность наступает за превышение предельно допустимых выбросов и сбросов вредных веществ в окружающую среду, невыполнение обязанностей по проведению государственной экологической экспертизы и требований, содержащихся в заключении экологической экспертизы, предоставление заведомо неправильных и необоснованных заключений, несвоевременное предоставление информации и предоставление искаженной информации, отказ от предоставления своевременной, полной, достоверной информации о состоянии природной среды и радиационной обстановке и т.д.

Конкретный размер штрафа определяется органом, налагающим штраф, в зависимости от характера и вида правонарушения, степени вины правонарушителя и причиненного вреда. Административные штрафы налагаются уполномоченными на то государственными органами в области охраны окружающей среды, санитарно-эпидемиологического надзора РФ. При этом постановление о наложении штрафа может быть обжаловано в суд или арбитражный суд. Наложение штрафа не освобождает виновных от обязанности возмещения причиненного вреда (ст. 84 Закона «Об охране окружающей природной среды»).

В новом Уголовном кодексе РФ экологические преступления выделены в отдельную главу (гл. 26). В нем предусмотрена уголовная ответственность за нарушение правил экологической безопасности при производстве работ, нарушение правил хранения, утилизации экологически опасных веществ и отходов, нарушение правил безопасности при обращении с микробиологическими или другими биологическими агентами или токсинами, загрязнение вод, атмосферы и моря, нарушение законодательства о континентальном шельфе, порчу земли, незаконную добычу водных животных и растений, нарушение правил охраны рыбных запасов, незаконную охоту, незаконную порубку деревьев и кустарников, уничтожение или повреждение лесных массивов.

Применение мер дисциплинарной, административной или уголовной ответственности за экологические правонарушения не освобождает виновных лиц от обязанности возмещения вреда, причиненного экологическим правонарушением. Закон «Об охране окружающей природной среды» стоит на той позиции, что предприятия, организации и граждане, причиняющие вред окружающей среде, здоровью или имуществу граждан, народному хозяйству загрязнением окружающей среды, порчей, уничтожением, повреждением, нерациональным использованием природных ресурсов, разрушением естественных экологических систем и другими экологическими правонарушениями, обязаны возместить его в полном объеме в соответствии с действующим законодательством (ст. 86).

Гражданско-правовая ответственность в сфере взаимодействия общества и природы заключается главным образом в возложении на правонарушителя обязанности возместить потерпевшей стороне имущественный или моральный вред в результате нарушения правовых экологических требований.

Ответственность за экологические правонарушения выполняет ряд основных функций:

стимулирующую к соблюдению норм права окружающей среды;

компенсаторную, направленную на возмещение потерь в природной среде, возмещение вреда здоровью человека;

превентивную, заключающуюся в наказании лица, виновного в совершении экологического правонарушения.

Экологическое законодательство предусматривает три уровня наказания: за нарушение; нарушение, повлекшее значительный ущерб; нарушение, повлекшее смерть человека (тяжкие последствия). Смерть человека вследствие экологического преступления оценивается законом как неосторожность (совершенное по небрежности или легкомыслию). Видами наказаний при экологических нарушениях могут быть штраф, лишение права занимать определенные должности, лишение права заниматься определенной деятельностью, исправительные работы, ограничение свободы, лишение свободы.

Одним из самых тяжких экологических преступлений является экоцид - массовое уничтожение растительного мира (растительных сообществ земли России или отдельных ее регионов) или животного мира (совокупность живых организмов всех видов диких животных, населяющих территорию России или определенный ее регион), отравление атмосферы и водных ресурсов (поверхностные и подземные воды, которые используются или могут быть использованы), а также совершение иных действий, способных вызвать экологическую катастрофу. Общественная опасность экоцида состоит в угрозе или нанесении огромного вреда окружающей природной среде, сохранению генофонда народа, животного и растительного мира.

Экологическая катастрофа проявляется в серьезном нарушении экологического равновесия в природе, разрушении устойчивого видового состава живых организмов, полном или существенном сокращении их численности, в нарушении циклов сезонных изменений биотического кругооборота веществ и биологических процессов. Мотивом экоцида может быть ложно понятые интересы военного или государственного характера, совершение действий с прямым или косвенным умыслом.

Успех в наведении экологического правопорядка достигается постепенным наращиванием общественного и государственного воздействия на злостных правонарушителей, оптимальным сочетанием воспитательных, экономических и правовых мер.

экологический загрязнение правонарушение


Список литературы


1. Акимова Т.В. Экология. Человек-Экономика-Биота-Среда: Учебник для студентов вузов/ Т.А.Акимова, В.В.Хаскин; 2-е изд., перераб. и дополн.- М.: ЮНИТИ, 2009.- 556 с.

Акимова Т.В. Экология. Природа-Человек-Техника.: Учебник для студентов техн. направл. и специал. вузов/ Т.А. Акимова, А.П. Кузьмин, В.В. Хаскин..- Под общ. ред. А.П.Кузьмина. М.: ЮНИТИ-ДАНА, 2011.- 343 с.

Бродский А.К. Общая экология: Учебник для студентов вузов. М.: Изд. Центр «Академия», 2011. - 256 с.

Воронков Н.А. Экология: общая, социальная, прикладная. Учебник для студентов вузов. М.: Агар, 2011. - 424 с.

Коробкин В.И. Экология: Учебник для студентов вузов/ В.И. Коробкин, Л.В. Передельский. -6-е изд., доп. И перераб.- Ростон н/Д: Феникс, 2012.- 575с.

Николайкин Н.И., Николайкина Н.Е., Мелехова О.П. Экорлогия. 2-е изд. Учебник для вузов. М.: Дрофа, 2008. - 624 с.

Стадницкий Г.В., Родионов А.И. Экология: Уч. пособие для стут. химико-технол. и техн. сп. вузов./ Под ред. В.А. Соловьева, Ю.А. Кротова.- 4-е изд., испр. - СПб.: Химия, 2012. -238с.

Одум Ю. Экология т.т. 1,2. Мир,2011.

Чернова Н.М. Общая экология: Учебник для студентов педагогических вузов/ Н.М. Чернова, А.М. Былова. - М.: Дрофа, 2008.-416 с.

Экология: Учебник для студентов высш. и сред. учеб. заведений, обуч. по техн. спец. и направлениям/Л.И. Цветкова, М.И. Алексеев, Ф.В. Карамзинов и др.; под общ. ред. Л.И. Цветковой. М.: АСБВ; СПб.: Химиздат, 2012.- 550 с.

Экология. Под ред. проф. В.В. Денисова. Ростов-н/Д.: ИКЦ «МарТ», 2011. - 768 с.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.


Понятие о трофических уровнях

Трофический уровень - это совокупность организмов, занимающих определенное положение в общей цепи питания. К одному трофическому уровню принадлежат организмы, получающие свою энергию от Солнца через одинаковое число ступеней.

Такая последовательность и соподчиненность связанных в форме трофических уровней групп организмов представляет собой поток вещества и энергии в экосистеме, основу ее организации.

Трофическая структура экосистемы

В результате последовательности превращений энергии в пищевых цепях каждое сообщество живых организмов в экосистеме приобретает определенную трофическую структуру. Трофическая структура сообщества отражает соотношение между продуцентами, консументами (отдельно первого, второго и т.д. порядков) и редуцентами, выраженное или количеством особей живых организмов, или ихбиомассой, или заключенной в них энергией, рассчитанными на единицу площади в единицу времени.

Трофическую структуру обычно изображают в виде экологических пирамид. Эту графическую модель разработал в 1927 г. американский зоолог Чарльз Элтон. Основанием пирамиды служит первый трофический уровень - уровень продуцентов, а следующие этажи пирамиды образованы последующими уровнями - консументами различных порядков. Высота всех блоков одинакова, а длина пропорциональна числу, биомассе или энергии на соответствующем уровне. Различают три способа построения экологических пирамид.

1. Пирамида чисел (численностей) отражает численность отдельных организмов на каждом уровне. Например, чтобы прокормить одного волка, необходимо по крайней мере несколько зайцев, на которых он мог бы охотиться; чтобы прокормить этих зайцев, нужно довольно большое количество разнообразных растений. Иногда пирамиды чисел могут быть обращенными, или перевернутыми. Это касается пищевых цепей леса, когда продуцентами служат деревья, а первичными консументами - насекомые. В этом случае уровень первичных консументов численно богаче уровня продуцентов (на одном дереве кормится большое количество насекомых).

2. Пирамида биомасс - соотношение масс организмов разных трофических уровней. Обычно в наземных биоценозах общая масса продуцентов больше, чем каждого последующего звена. В свою очередь, общая масса консументов первого порядка больше, нежели консументов второго порядка и т.д. Если организмы не слишком различаются по размерам, то на графике обычно получается ступенчатая пирамида с суживающейся верхушкой. Так, для образования 1 кг говядины необходимо 70-90 кг свежей травы.

В водных экосистемах можно также получить обращенную, или перевернутую, пирамиду биомасс, когда биомасса продуцентов оказывается меньшей, нежели консументов, а иногда и редуцентов. Например, в океане при довольно высокой продуктивности фитопланктона общая масса в данный момент его может быть меньше, нежели у потребителей-консументов (киты, крупные рыбы, моллюски).

Пирамиды чисел и биомасс отражают статику системы, т. е. характеризуют количество или биомассу организмов в определенный промежуток времени. Они не дают полной информации о трофической структуре экосистемы, хотя позволяют решать ряд практических задач, особенно связанных с сохранением устойчивости экосистем. Пирамида чисел позволяет, например, рассчитывать допустимую величину улова рыбы или отстрела животных в охотничий период без последствий для нормального их воспроизведения.

3. Пирамида энергии отражает величину потока энергии, скорость про хождения массы пищи через пищевую цепь. На структуру биоценоза в большей степени оказывает влияние не количество фиксированной энергии, а скорость продуцирования пищи.

Установлено, что максимальная величина энергии, передающейся на следующий трофический уровень, может в некоторых случаях составлять 30 % от предыдущего, и это в лучшем случае. Во многих биоценозах, пищевых цепях величина передаваемой энергии может составлять всего лишь 1 %.

В 1942 г. американский эколог Р. Линдеман сформулировал закон пирамиды энергий (закон 10 процентов) , согласно которому с одного трофического уровня через пищевые цепи на другой трофический уровень переходит в среднем около 10 % поступившей на предыдущий уровень экологической пирамиды энергии. Остальная часть энергии теряется в виде теплового излучения, на движение и т.д. Организмы в результате процессов обмена теряют в каждом звене пищевой цепи около 90 % всей энергии, которая расходуется на поддержание их жизнедеятельности.

Если заяц съел 10 кг растительной массы, то его собственная масса может увеличиться на 1 кг. Лисица или волк, поедая 1 кг зайчатины, увеличивают свою массу уже только на 100 г. У древесных растений эта доля много ниже из-за того, что древесина плохо усваивается организмами. Для трав и морских водорослей эта величина значительно больше, поскольку у них отсутствуют трудноусвояемые ткани. Однако общая закономерность процесса передачи энергии остается: через верхние трофические уровни ее проходит значительно меньше, чем через нижние.

Вот почему цепи питания обычно не могут иметь более 3-5 (редко 6) звеньев, а экологические пирамиды не могут состоять из большого количества этажей. К конечному звену пищевой цепи так же, как и к верхнему этажу экологической пирамиды, будет поступать так мало энергии, что ее не хватит в случае увеличения числа организмов.

Этому утверждению можно найти объяснение, проследив, куда тратится энергия потребленной пищи: часть ее идет на построение новых клеток, т.е. на прирост, часть энергии пищи расходуется на обеспечение энергетического обмена или на дыхание. Поскольку усвояемость пищи не может быть полной, т.е. 100 %, то часть неусвоенной пищи в виде экскрементов удаляется из организма.

Учитывая, что энергия, затраченная на дыхание, не передается на следующий трофический уровень и уходит из экосистемы, становится ясным, почему каждый последующий уровень всегда будет меньше предыдущего.

Именно поэтому большие хищные животные всегда редки. Поэтому также нет хищников, которые питались бы волками. В таком случае они просто не прокормились бы, поскольку волки немногочисленны.

Трофическая структура экосистемы выражается в сложных пищевых связях между составляющими ее видами. Экологические пирамиды чисел, биомассы и энергии, изображенные в виде графических моделей, выражают количественные соотношения разных по способу питания организмов: продуцентов, консументов и редуцентов.