Расчет кирпичной колоннына прочность и устойчивость. Несущая способность внутренней стены в один кирпич

В статье представлен пример расчета несущей способности кирпичной стены трехэтажного бескаркасного здания с учетом выявленных в ходе ее осмотра дефектов. Подобные расчеты относятся к категории «проверочных» и выполняются обычно в рамках детального визуально-инструментального обследования зданий.

Несущая способность центрально- и внецентренно — сжатых каменных столбов определяется на основании данных о фактической прочности материалов кирпичной кладки (кирпича, раствора) в соответствии с разделом 4 .

Для учета выявленных в ходе обследования дефектов в формулы СНиП вводится дополнительный понижающий коэффициент, учитывающий снижение несущей способности каменных конструкций (Ктр) в зависимости от характера и степени обнаруженных повреждений по таблицам гл. 4 .

ПРИМЕР РАСЧЕТА

Проверим несущую способность внутренней несущей каменной стены 1-го этажа по оси «8» м/о «Б»-«В» на действие эксплуатационных нагрузок с учетом выявленных в ходе ее обследования дефектов и повреждений.

Исходные данные:

— Толщина стены: dст=0,38 м
— Ширина простенка: b=1,64 м
— Высота простенка до низа плит перекрытий 1 этажа: H=3,0 м
— Высота вышележащего столба кладки: h=6,5 м
— Площадь сбора нагрузок от перекрытий и покрытия: Sгр=9,32 м2
— Расчетное сопротивление кладки cжатию: R=11,05 кг/см2

В ходе осмотра стены по оси «8» зафиксированы следующие дефекты и повреждения (см. фото ниже): массовое выпадение раствора из швов кладки на глубину более 4 см; смещение (искривление) горизонтальных рядов кладки по вертикали до 3 см; множественные вертикально ориентированные трещины раскрытием 2-4 мм (в т.ч. по растворным швам), пересекающие от 2 до 4 горизонтальных рядов кладки (до 2-х трещин на 1 м стены).



Пустошовка Растрескивание кирпича Искривление рядов кладки

По совокупности выявленных дефектов (с учетом их характера, степени развития и площади распространения), в соответствии с , несущая способность рассматриваемого простенка должна быть снижена не менее чем на 30%. Т.е. коэффициент снижения несущей способности простенка принимается равным — Ктр=0,7. Схема для сбора нагрузок на простенок приведена ниже на Рис.1.

РИС.1. Схема для сбора нагрузок на простенок

I. Сбор расчетных нагрузок на простенок

II. Расчет несущей способности простенка

(п. 4.1 СНиП II-22-81)

Количественная оценка фактической несущей способности кирпичного центрально сжатого простенка (с учетом влияния обнаруженных дефектов) на действие расчетной продольной силы N, приложенной без эксцентриситета, сводится к проверке выполнения следующего условия (формула 10 ):

Nс=mg×φ×R×A×Kтр ≥ N (1)

Согласно результатам прочностных испытаний расчетное сопротивление кладки стены по оси «8» сжатию составляет R=11,05 кг/см2 .
Упругая характеристика кладки согласно п.9 Таблицы 15(К) равна: α=500.
Расчетная высота столба: l0=0,8×H=0,8×300=240 см.
Гибкость элемента прямоугольного сплошного сечения: λh=l0 / dст=240/38=6,31.
Коэффициент продольного изгиба φ при α=500 и λh=6,31 (по Таблице 18): φ=0,90.
Площадь поперечного сечения столба (простенка): A=b×dст=164×38=6232 см2.
Т.к. толщина рассчитываемой стены более 30 см (dст=38 см), коэффициент mg принимается равным единице: mg=1.

Подставив полученные значения в левую часть формулы (1), определим фактическую несущую способность центрально-сжатого неармированного кирпичного простенка :

Nс=1×0,9×11,05×6232×0,7=43 384 кгс

III. Проверка выполнения условия прочности (1)

[ Nc=43384 кгс ] > [ N=36340,5 кгс ]

Условие прочности выполнено: несущая способность кирпичного столба с учетом влияния выявленных дефектов оказалась больше значения суммарной нагрузки N .

Список источников:
1. СНиП II-22-81* «Каменные и армокаменные конструкции».
2. Рекомендации по усилению каменных конструкций зданий и сооружений. ЦНИИСК им. Курченко, Госстрой.

Рисунок 1 . Расчетная схема для кирпичных колонн проектируемого здания.

При этом возникает естественный вопрос: какое минимальное сечение колонн обеспечит требуемую прочность и устойчивость? Конечно же, идея выложить колонны из глиняного кирпича, а тем более стены дома, является далеко не новой и все возможные аспекты расчетов кирпичных стен, простенков, столбов, которые есть суть колонны, достаточно подробно изложены в СНиП II-22-81 (1995) "Каменные и армокаменные конструкции". Именно этим нормативным документом и следует руководствоваться при расчетах. Приводимый ниже расчет, не более, чем пример использования указанного СНиПа.

Чтобы определить прочность и устойчивость колонн, нужно иметь достаточно много исходных данных, как то: марка кирпича по прочности, площадь опирания ригелей на колонны, нагрузка на колонны, площадь сечения колонны, а если на этапе проектирования ничего из этого не известно, то можно поступить следующим образом:

Пример расчета кирпичной колонны на устойчивость при центральном сжатии

Проектируется:

Терраса размерами 5х8 м. Три колонны (одна посредине и две по краям) из лицевого пустотелого кирпича сечением 0.25х0.25 м. Расстояние между осями колонн 4 м. Марка кирпича по прочности М75.

Расчетные предпосылки:

.

При такой расчетной схеме максимальная нагрузка будет на среднюю нижнюю колонну. Именно ее и следует рассчитывать на прочность. Нагрузка на колонну зависит от множества факторов, в частности от района строительства. Например, Санкт-Петербурге составляет 180 кг/м 2 , а в Ростове-на-Дону - 80 кг/м 2 . С учетом веса самой кровли 50-75 кг/м 2 нагрузка на колонну от кровли для Пушкина Ленинградской области может составить:

N с кровли = (180·1.25 + 75)·5·8/4 = 3000 кг или 3 тонны

Так как действующие нагрузки от материала перекрытия и от людей, восседающих на террасе, мебели и др. пока не известны, но железобетонная плита точно не планируется, а предполагается, что перекрытие будет деревянным, из отдельно лежащих обрезных досок, то для расчетов нагрузки от террасы можно принять равномерно распределенную нагрузку 600 кг/м 2 , тогда сосредоточенная сила от террасы, действующая на центральную колонну, составит:

N с террасы = 600·5·8/4 = 6000 кг или 6 тонн

Собственный вес колонн длиной 3 м будет составлять:

N с колонны = 1500·3·0.38·0.38 = 649.8 кг или 0.65 тонн

Таким образом суммарная нагрузка на среднюю нижнюю колонну в сечении колонны возле фундамента составит:

N с об = 3000 + 6000 + 2·650 = 10300 кг или 10.3 тонн

Однако в данном случае можно учесть, что существует не очень большая вероятность того, что временная нагрузка от снега, максимальная в зимнее время, и временная нагрузка на перекрытие, максимальная в летнее время, будут приложены одновременно. Т.е. сумму этих нагрузок можно умножить на коэффициент вероятности 0.9, тогда:

N с об = (3000 + 6000)·0.9 + 2·650 = 9400 кг или 9.4 тонн

Расчетная нагрузка на крайние колонны будет почти в два раза меньше:

N кр = 1500 + 3000 + 1300 = 5800 кг или 5.8 тонн

2. Определение прочности кирпичной кладки.

Марка кирпича М75 означает, что кирпич должен выдерживать нагрузку 75 кгс/см 2 , однако прочность кирпича и прочность кирпичной кладки - разные вещи. Понять это поможет следующая таблица:

Таблица 1 . Расчетные сопротивления сжатию для кирпичной кладки (согласно СНиП II-22-81 (1995))

Но и это еще не все. Все тот же СНиП II-22-81 (1995) п.3.11 а) рекомендует при площади столбов и простенков менее 0.3 м 2 умножать значение расчетного сопротивления на коэффициент условий работы γ с =0.8 . А так как площадь сечения нашей колонны составляет 0.25х0.25 = 0.0625 м 2 , то придется этой рекомендацией воспользоваться. Как видим, для кирпича марки М75 даже при использовании кладочного раствора М100 прочность кладки не будет превышать 15 кгс/см 2 . В итоге расчетное сопротивление для нашей колонны составит 15·0.8 = 12 кг/см 2 , тогда максимальное сжимающее напряжение составит:

10300/625 = 16.48 кг/см 2 > R = 12 кгс/см 2

Таким образом для обеспечения необходимой прочности колонны нужно или использовать кирпич большей прочности, например М150 (расчетное сопротивление сжатию при марке раствора М100 составит 22·0.8 = 17.6 кг/см 2) или увеличивать сечение колонны или использовать поперечное армирование кладки. Пока остановимся на использовании более прочного лицевого кирпича.

3. Определение устойчивости кирпичной колонны.

Прочность кирпичной кладки и устойчивость кирпичной колонны - это тоже разные вещи и все тот же СНиП II-22-81 (1995) рекомендует определять устойчивость кирпичной колонны по следующей формуле :

N ≤ m g φRF (1.1)

где m g - коэффициент, учитывающий влияние длительной нагрузки. В данном случае нам, условно говоря, повезло, так как при высоте сечения h ≈ 30 см, значение данного коэффициента можно принимать равным 1.

Примечание : Вообще-то с коэффициентом m g все не так просто, подробности можно посмотреть в комментариях к статье.

φ - коэффициент продольного изгиба, зависящий от гибкости колонны λ . Чтобы определить этот коэффициент, нужно знать расчетную длину колонны l 0 , а она далеко не всегда совпадает с высотой колонны. Тонкости определения расчетной длины конструкции изложены отдельно , здесь лишь отметим, что согласно СНиП II-22-81 (1995) п.4.3: "Расчетные высоты стен и столбов l 0 при определении коэффициентов продольного изгиба φ в зависимости от условий опирания их на горизонтальные опоры следует принимать:

а) при неподвижных шарнирных опорах l 0 = Н ;

б) при упругой верхней опоре и жестком защемлении в нижней опоре: для однопролетных зданий l 0 = 1,5H , для многопролетных зданий l 0 = 1,25H ;

в) для свободно стоящих конструкций l 0 = 2Н ;

г) для конструкций с частично защемленными опорными сечениями — с учетом фактической степени защемления, но не менее l 0 = 0,8Н , где Н — расстояние между перекрытиями или другими горизонтальными опорами, при железобетонных горизонтальных опорах расстояние между ними в свету."

На первый взгляд, нашу расчетную схему можно рассматривать, как удовлетворяющую условиям пункта б). т.е можно принимать l 0 = 1.25H = 1.25·3 = 3.75 метра или 375 см . Однако уверенно использовать это значение мы можем лишь в том случае, когда нижняя опора действительно жесткая. Если кирпичная колонна будет выкладываться на слой гидроизоляции из рубероида, уложенный на фундамент, то такую опору скорее следует рассматривать как шарнирную, а не жестко защемленную. И в этом случае наша конструкция в плоскости, параллельной плоскости стены, является геометрически изменяемой , так как конструкция перекрытия (отдельно лежащие доски) не обеспечивает достаточную жесткость в указанной плоскости. Из подобной ситуации возможны 4 выхода:

1. Применить принципиально другую конструктивную схему

например - металлические колонны, жестко заделанные в фундамент, к которым будут привариваться ригеля перекрытия, затем из эстетических соображений металлические колонны можно обложить лицевым кирпичом любой марки, так как всю нагрузку будет нести металл. В этом случае, правда нужно рассчитывать металлические колонны, но расчетную длину можно приниматьl 0 = 1.25H .

2. Сделать другое перекрытие ,

например из листовых материалов, что позволит рассматривать и верхнюю и нижнюю опору колонны, как шарнирные, в этом случае l 0 = H .

3. Сделать диафрагму жесткости

в плоскости, параллельной плоскости стены. Например по краям выложить не колонны, а скорее простенки. Это также позволит рассматривать и верхнюю и нижнюю опору колонны, как шарнирные, но в этом случае необходимо дополнительно рассчитывать диафрагму жесткости.

4. Не обращать внимания на вышеприведенные варианты и рассчитывать колонны, как отдельно стоящие с жесткой нижней опорой, т.е l 0 = 2Н

В конце концов древние греки ставили свои колонны (правда, не из кирпича) без каких-либо знаний о сопротивлении материалов, без использования металлических анкеров, да и столь тщательно выписанных строительных норм и правил в те времена не было, тем не менее некоторые колонны стоят и по сей день.

Теперь, зная расчетную длину колонны, можно определить коэффициент гибкости:

λ h = l 0 /h (1.2) или

λ i = l 0 /i (1.3)

где h - высота или ширина сечения колонны, а i - радиус инерции.

Определить радиус инерции в принципе не сложно, нужно разделить момент инерции сечения на площадь сечения, а затем из результата извлечь квадратный корень, однако в данном случае в этом нет большой необходимости. Таким образом λ h = 2·300/25 = 24 .

Теперь, зная значение коэффициента гибкости, можно наконец-то определить коэффициент продольного изгиба по таблице:

Таблица 2 . Коэффициенты продольного изгиба для каменных и армокаменных конструкций (согласно СНиП II-22-81 (1995))

При этом упругая характеристика кладки α определяется по таблице:

Таблица 3 . Упругая характеристика кладки α (согласно СНиП II-22-81 (1995))

В итоге значение коэффициента продольного изгиба составит около 0.6 (при значении упругой характеристики α = 1200, согласно п.6). Тогда предельная нагрузка на центральную колонну составит:

N р = m g φγ с RF = 1х0.6х0.8х22х625 = 6600 кг < N с об = 9400 кг

Это означает, что принятого сечения 25х25 см для обеспечения устойчивости нижней центральной центрально-сжатой колонны недостаточно. Для увеличения устойчивости наиболее оптимальным будет увеличение сечения колонны. Например, если выкладывать колонну с пустотой внутри в полтора кирпича, размерами 0.38х0.38 м, то таким образом не только увеличится площадь сечения колонны до 0.13 м 2 или 1300 см 2 , но увеличится и радиус инерции колонны до i = 11.45 см . Тогда λ i = 600/11.45 = 52.4 , а значение коэффициента φ = 0.8 . В этом случае предельная нагрузка на центральную колонну составит:

N р = m g φγ с RF = 1х0.8х0.8х22х1300 = 18304 кг > N с об = 9400 кг

Это означает, что сечения 38х38 см для обеспечения устойчивости нижней центральной центрально-сжатой колонны хватает с запасом и даже можно уменьшить марку кирпича. Например, при первоначально принятой марке М75 предельная нагрузка составит:

N р = m g φγ с RF = 1х0.8х0.8х12х1300 = 9984 кг > N с об = 9400 кг

Вроде бы все, но желательно учесть еще одну деталь. Фундамент в этом случае лучше делать ленточным (единым для всех трех колонн), а не столбчатым (отдельно для каждой колонны), в противном случае даже небольшие просадки фундамента приведут к дополнительным напряжениям в теле колонны и это может привести к разрушению. С учетом всего вышеизложенного наиболее оптимальным будет сечение колонн 0.51х0.51 м, да и с эстетической точки зрения такое сечение является оптимальным. Площадь сечения таких колонн составит 2601 см 2 .

Пример расчета кирпичной колонны на устойчивость при внецентренном сжатии

Крайние колонны в проектируемом доме не будут центрально сжатыми, так как на них будут опираться ригеля только с одной стороны. И даже если ригеля будут укладываться на всю колонну, то все равно из-за прогиба ригелей нагрузка от перекрытия и кровли будет передаваться крайним колоннам не по центру сечения колонны. В каком именно месте будет передаваться равнодействующая этой нагрузки, зависит от угла наклона ригелей на опорах, модулей упругости ригелей и колонн и ряда других факторов, которые подробно рассматриваются в статье "Расчет опорного участка балки на смятие ". Это смещение называется эксцентриситетом приложения нагрузки е о. В данном случае нас интересует наиболее неблагоприятное сочетание факторов, при котором нагрузка от перекрытия на колонны будет передаваться максимально близко к краю колонны. Это означает, что на колонны кроме самой нагрузки будет также действовать изгибающий момент, равный M = Ne о , и этот момент нужно учесть при расчетах. В общем случае проверку на устойчивость можно выполнять по следующей формуле:

N = φRF - MF/W (2.1)

где W - момент сопротивления сечения. В данном случае нагрузку для нижних крайних колонн от кровли можно условно считать центрально приложенной, а эксцентриситет будет создавать только нагрузка от перекрытия. При эксцентриситете 20 см

N р = φRF - MF/W = 1х0.8х0.8х12х2601 - 3000·20·2601 · 6/51 3 = 19975, 68 - 7058.82 = 12916.9 кг > N кр = 5800 кг

Таким образом даже при очень большом эксцентриситете приложения нагрузки у нас имеется более чем двукратный запас по прочности.

Примечание: СНиП II-22-81 (1995) "Каменные и армокаменные конструкции" рекомендует использовать другую методику расчета сечения, учитывающую особенности каменных конструкций, однако результат при этом будет приблизительно таким же, поэтому методику расчета, рекомендуемую СНиПом здесь не привожу.

Требуется определить расчетную несущую способность участка стены здания с жесткой конструктивной схемой*

Расчет несущей способности участка несущей стены здания с жесткой конструктивной схемой.

К участку стены прямоугольного сечения приложена расчетная про­дольная сила N = 165 кН (16,5 тс), от длительных нагрузокN g = 150 кН (15 тс), кратковременныхN st = 15 кН (1,5тс). Размер сечения - 0,40x1,00 м, высота этажа - 3 м, нижние и верхние опоры стены - шарнирные, не­подвижные. Стена запроектирована из четырехслойных блоков проектной марки по прочности М50, с применением строительного раствора проектной марки М50.

Требуется проверить несущую способность элемента стены в середине высоты этажа при возведении здания в летних условиях.

В соответствии с п. для несущих стен толщиной 0,40 м случайный эксцентриситет не следует учитывать. Расчет производим по формуле

N m g RA  ,

где N - расчетная продольная сила.

Пример расчета, приведенный в настоящем Приложении, выполнен по формулам, таблицам и пунктам СНиП П-22-81 * (приведены в квадратных скобках) и настоящим Рекомендациям.

Площадь сечения элемента

А = 0,40 ∙ 1,0 = 0,40м.

Расчетное сопротивление сжатию кладки R по табл.1 настоящих Ре­комендаций с учетом коэффициента условий работы с = 0,8, см. п. , равно

R = 9,2-0,8 = 7,36 кгс/см 2 (0,736МПа).

Пример расчета, приведенный в настоящем Приложении, выполнен по формулам, таблицам и пунктам СНиП П-22-81 * (приведены в квадратных скобках) и настоящим Рекомендациям.

Расчетная длина элемента согласно черт., п. равна

l 0 = Η = З м.

Гибкость элемента равна

.

Упругая характеристика кладки , принимаемая по данным «Реко­мендациям», равна

Коэффициент продольного изгиба определяем по табл.

Коэффициент, учитывающий влияние длительной нагрузки при тол­щине стены 40 см, принимаем m g = 1.

Коэффициент для кладки из четырехслойных блоков принимается по табл. равным 1,0.

Расчетная несущая способность участка стены N cc равна

N cc = mg m g R A  =1,0 ∙ 0,9125 ∙ 0,736 ∙ 10 3 ∙ 0,40 ∙ 1,0 = 268,6 кН (26,86 тс).

Расчетная продольная сила N меньшеN cc :

N = 165 кН < N cc = 268,6 кН.

Следовательно, стена удовлетворяет требованиям по несущей способ­ности.

II пример расчета сопротивления теплопередаче стен зданий из четырехслойных теплоэффективных блоков

Пример. Определить сопротивление теплопередаче стены толщиной 400 мм из четырехслойных теплоэффективных блоков. Внутренняя поверхность стены со стороны помещения облицовывается гипсокартонными листами.

Стена проектируется для помещений с нормальной влажностью и умеренного наружного климата, район строительства - г. Москва и Мос­ковская область.

При расчете принимаем кладку из четырехслойных блоков со слоями, имеющими характеристики:

Внутренний слой - керамзитобетон толщиной 150 мм, плотностью 1800 кг/м 3 -= 0,92 Вт/м ∙ 0 С;

Наружный слой - поризованный керамзитобетон толщиной 80 мм, плотностью 1800 кг/м 3 -= 0,92 Вт/м ∙ 0 С;

Теплоизоляционный слой - полистирол толщиной 170 мм, - 0,05 Вт/м ∙ 0 С;

Сухая штукатурка из гипсовых обшивочных листов толщиной 12 мм - = 0,21 Вт/м ∙ 0 С.

Приведенное сопротивление теплопередаче наружной стены рассчиты­вается по основному конструктивному элементу, наиболее повторяемому в здании. Конструкция стены здания с основным конструктивным элементом приведена на рис.2, 3. Требуемое приведенное сопротивление теплопередаче стены определяется по СНиП 23-02-2003 «Тепловая защита зданий», исходя из условий энергосбережения по таблице 1б* для жилых зданий.

Для условий г. Москвы и Московской области требуемое сопротивле­ние теплопередаче стен зданий (II этап)

ГСОП = (20 + 3,6)∙213 = 5027 град. сут.

Общее сопротивление теплопередаче R o принятой конструкции стены определяется по формуле

,(1)

где и - коэффициенты теплоотдаче внутренней и наружной по­верхности стены,

принимаемые по СНиП 23-2-2003- 8,7 Вт/м 2 ∙ 0 С и 23 Вт/м 2 ∙ 0 С

соответственно;

R 1 ,R 2 ...R n - термические сопротивления отдельных слоев конструкций блока

n - толщина слоя (м);

n - коэффициент теплопроводности слоя (Вт/м 2 ∙ 0 С)

= 3,16 м 2 ∙ 0 С/Вт.

Определяем приведенное сопротивление теплопередаче стены R o без штукатурного внутреннего слоя.

R o =
= 0,115 + 0,163 + 3,4 + 0,087 + 0,043 = 3,808 м 2 ∙ 0 С/Вт.

При необходимости применения со стороны помещения внутреннего штукатурного слоя из гипсокартонных листов сопротивления теплопередаче стены увеличивается на

R шт. =
= 0,571 м 2 ∙ 0 С/Вт.

Термическое сопротивление стены составит

R o = 3,808 + 0,571 = 4,379 м 2 ∙ 0 С/Вт.

Таким образом, конструкция наружной стены из четырехслойных теплоэффективных блоков толщиной 400 мм с внутренним штукатурным слоем из гипсокартонных листов толщиной 12 мм общей толщиной 412 мм имеет приведенное сопротивление теплопередаче равное 4,38 м 2 ∙ 0 С/Вт удовлетво­ряет требованиям, предъявляемым к теплозащитным качествам наружных ограждающих конструкций зданий в климатических условиях г. Москвы и Московской области.

В.В. Габрусенко

Нормы проектирования (СНиП II-22-81) разрешают принимать минимальную толщину несущих каменных стен для кладки I группы в пределах от 1/20 до 1/25 высоты этажа. При высоте этажа до 5 м в эти ограничения вполне вписывается кирпичная стена толщиной всего 250 мм (1 кирпич), чем и пользуются проектировщики - особенно часто в последнее время.

С точки зрения формальных требований, проектировщики действуют на вполне законном основании и энергично сопротивляются, когда кто-то пытается их намерениям препятствовать.

Между тем тонкие стены наиболее сильно реагируют на всевозможные отклонения от проектных характеристик. Причем даже на такие, которые официально допустимы Нормами правил производства и приемки работ (СНиП 3.03.01-87). В их числе: отклонения стен по смещению осей (10 мм), по толщине (15 мм), по отклонению на один этаж от вертикали (10 мм), по смещению опор плит перекрытия в плане (6…8 мм) и пр.

К чему приводят эти отклонения, рассмотрим на примере внутренней стены высотой 3,5 м и толщиной 250 мм из кирпича марки 100 на растворе марки 75, несущей расчетную нагрузку от перекрытия 10 кПа (плиты пролетом по 6 м с обеих сторон) и веса вышележащих стен. Стена рассчитана на центральное сжатие. Её расчетная несущая способность, определенная по СНиП II-22-81, составляет 309 кН/м.

Допустим, что нижняя стена смещена от оси на 10 мм влево, а верхняя стена - на 10 мм вправо (рисунок). Кроме того, на 6 мм вправо от оси смещены плиты перекрытия. То есть, нагрузка от перекрытия N 1 = 60 кН/м приложена с эксцентриситетом 16 мм, а нагрузка от вышележащей стены N 2 - с эксцентриситетом 20 мм, тогда эксцентриситет равнодействующей составит 19 мм. При таком эксцентриситете несущая способность стены снизится до 264 кН/м, т.е. на 15%. И это - при наличии всего двух отклонений и при условии, что отклонения не превышают допустимые Нормами значения.

Если добавить сюда несимметричное нагружение перекрытий временной нагрузкой (справа больше, чем слева) и «допуски», которые позволяют себе строители, - утолщение горизонтальных швов, традиционно плохое заполнение вертикальных швов, некачественная перевязка, искривление или наклон поверхности, «подмолаживание» раствора, чрезмерное использование половняка и т. д. и т. п., - то несущая способность может снизиться еще не менее чем на 20…30%. В итоге перегрузка стены превысит величину 50…60%, за которой начинается необратимый процесс разрушения. Процесс этот проявляется не всегда сразу, бывает - спустя годы после завершения строительства. Причем надо иметь в виду, что чем меньше сечение (толщина) элементов, тем сильнее отрицательное влияние перегрузок, поскольку с уменьшением толщины уменьшается возможность перераспределения напряжений в пределах сечения за счет пластических деформаций кладки.

Если добавить ещё неравномерные деформации оснований (вследствие замачивания грунтов), чреватые поворотом подошвы фундамента, «зависанием» наружных стен на внутренних несущих стенах, образованием трещин и снижением устойчивости, то речь уже пойдет не просто о перегрузке, а о внезапном обрушении.

Сторонники тонких стен могут возразить, что для всего этого нужно слишком большое сочетание дефектов и неблагоприятных отклонений. Ответим им: подавляющее большинство аварий и катастроф в строительстве происходит именно тогда, когда в одном месте и в одно время собирается несколько негативных факторов - в этом случае «слишком много» их не бывает.

Выводы

    Толщина несущих стен должна составлять не менее 1,5 кирпичей (380 мм). Стены толщиной в 1 кирпич (250 мм) допускается применять только для одноэтажных или для последних этажей многоэтажных зданий.

    Это требование следует внести в будущие Территориальные нормы проектирования строительных конструкций и зданий, необходимость в разработке которых давно назрела. Пока же можно только порекомендовать проектировщикам избегать применения несущих стен толщиной менее 1,5 кирпичей.

Кирпич - достаточно прочный строительный материал, особенно полнотелый, и при строительстве домов в 2-3 этажа стены из рядового керамического кирпича в дополнительных расчетах как правило не нуждаются. Тем не менее ситуации бывают разные, например, планируется двухэтажный дом с террасой на втором этаже. Металлические ригеля, на которые будут опираться также металлические балки перекрытия террасы, планируется опереть на кирпичные колонны из лицевого пустотелого кирпича высотой 3 метра, выше будут еще колонны высотой 3 м, на которые будет опираться кровля:

При этом возникает естественный вопрос: какое минимальное сечение колонн обеспечит требуемую прочность и устойчивость? Конечно же, идея выложить колонны из глиняного кирпича, а тем более стены дома, является далеко не новой и все возможные аспекты расчетов кирпичных стен, простенков, столбов, которые есть суть колонны, достаточно подробно изложены в СНиП II-22-81 (1995) "Каменные и армокаменные конструкции". Именно этим нормативным документом и следует руководствоваться при расчетах. Приводимый ниже расчет, не более, чем пример использования указанного СНиПа.

Чтобы определить прочность и устойчивость колонн, нужно иметь достаточно много исходных данных, как то: марка кирпича по прочности, площадь опирания ригелей на колонны, нагрузка на колонны, площадь сечения колонны, а если на этапе проектирования ничего из этого не известно, то можно поступить следующим образом:


при центральном сжатии

Проектируется: Терраса размерами 5х8 м. Три колонны (одна посредине и две по краям) из лицевого пустотелого кирпича сечением 0,25х0,25 м. Расстояние между осями колонн 4 м. Марка кирпича по прочности М75.

При такой расчетной схеме максимальная нагрузка будет на среднюю нижнюю колонну. Именно ее и следует рассчитывать на прочность. Нагрузка на колонну зависит от множества факторов, в частности от района строительства. Например, снеговая нагрузка на кровлю в Санкт-Петербурге составляет 180 кг/м², а в Ростове-на-Дону - 80 кг/м². С учетом веса самой кровли 50-75 кг/м² нагрузка на колонну от кровли для Пушкина Ленинградской области может составить:

N с кровли = (180·1,25 +75)·5·8/4 = 3000 кг или 3 тонны

Так как действующие нагрузки от материала перекрытия и от людей, восседающих на террасе, мебели и др. пока не известны, но железобетонная плита точно не планируется, а предполагается, что перекрытие будет деревянным, из отдельно лежащих обрезных досок, то для расчетов нагрузки от террасы можно принять равномерно распределенную нагрузку 600 кг/м², тогда сосредоточенная сила от террасы, действующая на центральную колонну, составит:

N с террасы = 600·5·8/4 = 6000 кг или 6 тонн

Собственный вес колонн длиной 3 м будет составлять:

N с колонны = 1500·3·0,38·0,38 = 649,8 кг или 0,65 тонн

Таким образом суммарная нагрузка на среднюю нижнюю колонну в сечении колонны возле фундамента составит:

N с об = 3000 + 6000 + 2·650 = 10300 кг или 10,3 тонн

Однако в данном случае можно учесть, что существует не очень большая вероятность того, что временная нагрузка от снега, максимальная в зимнее время, и временная нагрузка на перекрытие, максимальная в летнее время, будут приложены одновременно. Т.е. сумму этих нагрузок можно умножить на коэффициент вероятности 0,9, тогда:

N с об = (3000 + 6000)·0.9 + 2·650 = 9400 кг или 9,4 тонн

Расчетная нагрузка на крайние колонны будет почти в два раза меньше:

N кр = 1500 + 3000 + 1300 = 5800 кг или 5,8 тонн

2. Определение прочности кирпичной кладки.

Марка кирпича М75 означает, что кирпич должен выдерживать нагрузку 75 кгс/см², однако прочность кирпича и прочность кирпичной кладки - разные вещи. Понять это поможет следующая таблица:

Таблица 1 . Расчетные сопротивления сжатию для кирпичной кладки

Но и это еще не все. Все тот же СНиП II-22-81 (1995) п.3.11 а) рекомендует при площади столбов и простенков менее 0.3 м² умножать значение расчетного сопротивления на коэффициент условий работы γ с =0,8 . А так как площадь сечения нашей колонны составляет 0,25х0,25 = 0,0625 м², то придется этой рекомендацией воспользоваться. Как видим, для кирпича марки М75 даже при использовании кладочного раствора М100 прочность кладки не будет превышать 15 кгс/см². В итоге расчетное сопротивление для нашей колонны составит 15·0,8 = 12 кг/см², тогда максимальное сжимающее напряжение составит:

10300/625 = 16,48 кг/см² > R = 12 кгс/см²

Таким образом для обеспечения необходимой прочности колонны нужно или использовать кирпич большей прочности, например М150 (расчетное сопротивление сжатию при марке раствора М100 составит 22·0,8 = 17,6 кг/см²) или увеличивать сечение колонны или использовать поперечное армирование кладки. Пока остановимся на использовании более прочного лицевого кирпича.

3. Определение устойчивости кирпичной колонны.

Прочность кирпичной кладки и устойчивость кирпичной колонны - это тоже разные вещи и все тот же СНиП II-22-81 (1995) рекомендует определять устойчивость кирпичной колонны по следующей формуле :

N ≤ m g φRF (1.1)

m g - коэффициент, учитывающий влияние длительной нагрузки. В данном случае нам, условно говоря, повезло, так как при высоте сечения h ≤ 30 см, значение данного коэффициента можно принимать равным 1.

φ - коэффициент продольного изгиба, зависящий от гибкости колонны λ . Чтобы определить этот коэффициент, нужно знать расчетную длину колонны l o , а она далеко не всегда совпадает с высотой колонны. Тонкости определения расчетной длины конструкции здесь не изложены, лишь отметим, что согласно СНиП II-22-81 (1995) п.4.3: "Расчетные высоты стен и столбов l o при определении коэффициентов продольного изгиба φ в зависимости от условий опирания их на горизонтальные опоры следует принимать:

а) при неподвижных шарнирных опорах l o = Н ;

б) при упругой верхней опоре и жестком защемлении в нижней опоре: для однопролетных зданий l o = 1,5H , для многопролетных зданий l o = 1,25H ;

в) для свободно стоящих конструкций l o = 2Н ;

г) для конструкций с частично защемленными опорными сечениями — с учетом фактической степени защемления, но не менее l o = 0,8Н , где Н — расстояние между перекрытиями или другими горизонтальными опорами, при железобетонных горизонтальных опорах расстояние между ними в свету."

На первый взгляд, нашу расчетную схему можно рассматривать, как удовлетворяющую условиям пункта б). т.е можно принимать l o = 1,25H = 1,25·3 = 3,75 метра или 375 см . Однако уверенно использовать это значение мы можем лишь в том случае, когда нижняя опора действительно жесткая. Если кирпичная колонна будет выкладываться на слой гидроизоляции из рубероида, уложенный на фундамент, то такую опору скорее следует рассматривать как шарнирную, а не жестко защемленную. И в этом случае наша конструкция в плоскости, параллельной плоскости стены, является геометрически изменяемой, так как конструкция перекрытия (отдельно лежащие доски) не обеспечивает достаточную жесткость в указанной плоскости. Из подобной ситуации возможны 4 выхода:

1. Применить принципиально другую конструктивную схему , например - металлические колонны, жестко заделанные в фундамент, к которым будут привариваться ригеля перекрытия, затем из эстетических соображений металлические колонны можно обложить лицевым кирпичом любой марки, так как всю нагрузку будет нести металл. В этом случае, правда нужно рассчитывать металлические колонны, но расчетную длину можно принимать l o = 1,25H .

2. Сделать другое перекрытие , например из листовых материалов, что позволит рассматривать и верхнюю и нижнюю опору колонны, как шарнирные, в этом случае l o = H .

3. Сделать диафрагму жесткости в плоскости, параллельной плоскости стены. Например по краям выложить не колонны, а скорее простенки. Это также позволит рассматривать и верхнюю и нижнюю опору колонны, как шарнирные, но в этом случае необходимо дополнительно рассчитывать диафрагму жесткости.

4. Не обращать внимания на вышеприведенные варианты и рассчитывать колонны, как отдельно стоящие с жесткой нижней опорой, т.е l o = 2Н . В конце концов древние греки ставили свои колонны (правда, не из кирпича) без каких-либо знаний о сопротивлении материалов, без использования металлических анкеров, да и столь тщательно выписанных строительных норм и правил в те времена не было, тем не менее некоторые колонны стоят и по сей день.

Теперь, зная расчетную длину колонны, можно определить коэффициент гибкости:

λ h = l o / h (1.2) или

λ i = l o (1.3)

h - высота или ширина сечения колонны, а i - радиус инерции.

Определить радиус инерции в принципе не сложно, нужно разделить момент инерции сечения на площадь сечения, а затем из результата извлечь квадратный корень, однако в данном случае в этом нет большой необходимости. Таким образом λ h = 2·300/25 = 24 .

Теперь, зная значение коэффициента гибкости, можно наконец-то определить коэффициент продольного изгиба по таблице:

Таблица 2 . Коэффициенты продольного изгиба для каменных и армокаменных конструкций
(согласно СНиП II-22-81 (1995))

При этом упругая характеристика кладки α определяется по таблице:

Таблица 3 . Упругая характеристика кладки α (согласно СНиП II-22-81 (1995))

В итоге значение коэффициента продольного изгиба составит около 0,6 (при значении упругой характеристики α = 1200, согласно п.6). Тогда предельная нагрузка на центральную колонну составит:

N р = m g φγ с RF = 1·0,6·0,8·22·625 = 6600 кг < N с об = 9400 кг

Это означает, что принятого сечения 25х25 см для обеспечения устойчивости нижней центральной центрально-сжатой колонны недостаточно. Для увеличения устойчивости наиболее оптимальным будет увеличение сечения колонны. Например, если выкладывать колонну с пустотой внутри в полтора кирпича, размерами 0,38х0,38 м, то таким образом не только увеличится площадь сечения колонны до 0,13 м² или 1300 см², но увеличится и радиус инерции колонны до i = 11,45 см . Тогда λ i = 600/11,45 = 52,4 , а значение коэффициента φ = 0,8 . В этом случае предельная нагрузка на центральную колонну составит:

N р = m g φγ с RF = 1·0,8·0,8·22·1300 = 18304 кг > N с об = 9400 кг

Это означает, что сечения 38х38 см для обеспечения устойчивости нижней центральной центрально-сжатой колонны хватает с запасом и даже можно уменьшить марку кирпича. Например, при первоначально принятой марке М75 предельная нагрузка составит:

N р = m g φγ с RF = 1·0,8·0,8·12·1300 = 9984 кг > N с об = 9400 кг

Вроде бы все, но желательно учесть еще одну деталь. Фундамент в этом случае лучше делать ленточным (единым для всех трех колонн), а не столбчатым (отдельно для каждой колонны), в противном случае даже небольшие просадки фундамента приведут к дополнительным напряжениям в теле колонны и это может привести к разрушению. С учетом всего вышеизложенного наиболее оптимальным будет сечение колонн 0,51х0,51 м, да и с эстетической точки зрения такое сечение является оптимальным. Площадь сечения таких колонн составит 2601 см².

Пример расчета кирпичной колонны на устойчивость
при внецентренном сжатии

Крайние колонны в проектируемом доме не будут центрально сжатыми, так как на них будут опираться ригеля только с одной стороны. И даже если ригеля будут укладываться на всю колонну, то все равно из-за прогиба ригелей нагрузка от перекрытия и кровли будет передаваться крайним колоннам не по центру сечения колонны. В каком именно месте будет передаваться равнодействующая этой нагрузки, зависит от угла наклона ригелей на опорах, модулей упругости ригелей и колонн и ряда других факторов. Это смещение называется эксцентриситетом приложения нагрузки е о. В данном случае нас интересует наиболее неблагоприятное сочетание факторов, при котором нагрузка от перекрытия на колонны будет передаваться максимально близко к краю колонны. Это означает, что на колонны кроме самой нагрузки будет также действовать изгибающий момент, равный M = Ne о , и этот момент нужно учесть при расчетах. В общем случае проверку на устойчивость можно выполнять по следующей формуле:

N = φRF - MF/W (2.1)

W - момент сопротивления сечения. В данном случае нагрузку для нижних крайних колонн от кровли можно условно считать центрально приложенной, а эксцентриситет будет создавать только нагрузка от перекрытия. При эксцентриситете 20 см

N р = φRF - MF/W = 1·0,8·0,8·12·2601 - 3000·20·2601 · 6/51 3 = 19975,68 - 7058,82 = 12916,9 кг > N кр = 5800 кг

Таким образом даже при очень большом эксцентриситете приложения нагрузки у нас имеется более чем двукратный запас по прочности.

Примечание: СНиП II-22-81 (1995) "Каменные и армокаменные конструкции" рекомендует использовать другую методику расчета сечения, учитывающую особенности каменных конструкций, однако результат при этом будет приблизительно таким же, поэтому методика расчета, рекомендуемая СНиПом здесь не приводится.