Диссоциация воды химия. Электролитическая диссоциация воды

Чистая вода, хоть и плохо (по сравнению с растворами электролитов), но может проводить электрический ток. Это вызвано способностью молекулы воды распадаться (диссоциировать) на два иона которые и являются проводниками электрического тока в чистой воде (ниже под диссоциацией подразумевается электролитическая диссоциация - распад на ионы):

Водородный показатель (рН) величина, характеризующая активность или концентрацию ионов водорода в растворах. Водородный показатель обозначается рН. Водородный показатель численно равен отрицательному десятичному логарифму активности или концентрации ионов водорода, выраженной в молях на литр: pH=-lg[ H+ ] Если [ H+ ]>10-7моль/л, [ OH-]<10-7моль/л -среда кислая; рН<7.Если [ H+ ]<10-7 моль/л, [ OH-]>10-7моль/л -среда щелочная; рН>7. Гидролиз солей - это химическое взаимодействие ионов соли с ионами воды, приводящее к образованию слабого электролита. 1). Гидролиз не возможенСоль, образованная сильным основанием и сильной кислотой (KBr , NaCl , NaNO3 ), гидролизу подвергаться не будет, так как в этом случае слабый электролит не образуется.рН таких растворов = 7. Реакция среды остается нейтральной. 2). Гидролиз по катиону (в реакцию с водой вступает только катион). В соли, образованной слабым основанием и сильной кислотой

(FeCl2 , NH4Cl , Al2(SO4)3 ,MgSO4 )

гидролизу подвергается катион:

FeCl2 + HOH <=>Fe(OH)Cl + HCl Fe2+ + 2Cl- + H+ + OH- <=> FeOH+ + 2Cl- + Н+

В результате гидролиза образуется слабый электролит, ион H+ и другие ионы. рН раствора < 7 (раствор приобретает кислую реакцию). 3). Гидролиз по аниону (в реакцию с водой вступает только анион). Соль, образованная сильным основанием и слабой кислотой

(КClO , K2SiO3 , Na2CO3 ,CH3COONa )

подвергается гидролизу по аниону, в результате чего образуется слабый электролит, гидроксид-ион ОН- и другие ионы.

K2SiO3 + НОH <=>KHSiO3 + KОН 2K+ +SiO32- + Н+ + ОH-<=> НSiO3- + 2K+ + ОН-

рН таких растворов > 7 (раствор приобретает щелочную реакцию).4). Совместный гидролиз (в реакцию с водой вступает и катион и анион). Соль, образованная слабым основанием и слабой кислотой

(СН 3СООNН 4 , (NН 4)2СО 3 , Al2S3 ),

гидролизуется и по катиону, и по аниону. В результате образуются малодиссоциирующие основание и кислота. рН растворов таких солей зависит от относительной силы кислоты и основания. Мерой силы кислоты и основания является константа диссоциации соответствующего реактива. Реакция среды этих растворов может быть нейтральной, слабокислой или слабощелочной:

Al2S3 + 6H2O =>2Al(OH)3v+ 3H2S^

Гидролиз - процесс обратимый. Гидролиз протекает необратимо, если в результате реакции образуется нерастворимое основание и (или) летучая кислота

Исключительно важную роль в биологических процессах играет вода, являющаяся обязательной составной частью (от 58 до 97%) всех клеток и тканей человека, животных, растений и простейших организмов Вода- это среда, в которой протекают самые разнообразные биохимические процессы.

Вода обладает хорошей растворяющей способностью и вызывает электролитическую диссоциацию многих растворенных в ней веществ.

Процесс диссоциации воды согласно теории Бренстеда протекает по уравнению:

Н 2 0+Н 2 0 Н 3 О + + ОН - ; ΔН дис = +56,5 КДж/моль

Т.е. одна молекула воды отдает, а другая - присоединяет протон, происходит автоионизация воды:

Н 2 0 Н + + ОН - - реакция депротонирования

Н 2 0 + Н + Н 3 О + - реакция протонирования

Константа диссоциации водыпри 298°К, определенная методом электрической проводимости равна:

а(Н +) - активность ионов Н + (для краткости вместо НзО + пишут Н +);

а(ОН -) - активность ионов ОН - ;

а(Н 2 0)- активность воды;

Степень диссоциации воды очень мала, поэтому активность водород - и гидроксид - ионов в чистой воде практически равны их концентрациям. Концентрация воды является постоянной величиной и равна 55,6 моль.

(1000г: 18г/моль= 55,6 моль)

Подставляя в выражение для константы диссоциации Кд(Н 2 0) это значение, а вместо активностей водород - и гидроксид - ионов их концентрации, получают новое выражение:

К(Н 2 0)=С(Н +)×С(ОН -)=10 -14 мол 2 /л 2 при 298К,

Более точно К(Н 2 0)= а(Н +)×а(ОН -)= 10 -14 моль 2 л 2 -

К(Н 2 0) называют ионным произведением воды или константой автоионизации.

В чистой воде или любом водном растворе при постоянной температуре произведение концентраций (активностей) водород - и гидроксид - ионов есть величина постоянная, называемая ионным произведением воды.

Константа К(Н 2 0) зависит от температуры. При повышении температуры она увеличивается, т.к. процесс диссоциации воды - эндотермический. В чистой воде или водных растворах разных веществ при 298К активности (концентрации) водород - и гидроксид - ионов будут составлять:

а(Н +)=а(ОН -)=К(Н 2 0) = 10 -14 =10 -7 моль/л.

В кислых или щелочных растворах эти концентрации уже не будут равны друг другу, но изменяться будут сопряжено: при увеличении одной из них соответственно будет уменьшаться другая и наоборот, например,

а(Н +)=10 -4 , а(ОН -)=10 -10 , их произведение всегда составляет 10 -14

Водородный показатель

Качественно реакцию среды выражают через активность водородных ионов. На практике пользуются не этой величиной, а водородным показателем рН - величиной, численно равной отрицательному десятичному логарифму активности (концентрации) водородных ионов, выраженной в моль/л.

рН= - lga (H + ),

а для разбавленных растворов

рН= - lgC (H + ).

Для чистой воды и нейтральных сред при 298К рН=7; для кислых растворов рН<7, а для щелочных рН>7.

Реакцию среды можно охарактеризовать и гидроксильным показателем:

рОН= - lga (OH - )

или приближенно

рОН= - Ig С(О H - ).

Соответственно в нейтральной среде рОН=рН=7; в кислой среде рОН>7, а в щелочной рОН<7.

Если взять отрицательный десятичный логарифм выражения ионного произведения воды, получим:

рН + рОН=14.

Следовательно, рН и рОН также являются сопряженными величинами. Их сумма для разбавленных водных растворов всегда равна 14. Зная рН, легко вычислить рОН:

рН=14 – рОН

и наоборот:

р OH = 14 - рН.

В растворах различают активную, потенциальную (резервную) и общую кислотность.

Активная кислотность измеряется активностью (концентрацией) водород-ионов в растворе и определяет рН раствора. В растворах сильных кислот и оснований рН зависит от концентрации кислотыили основания, и активность ионов Н + и ОН - может быть рассчитана по формулам:

а(Н + )= C(l/z кислота)×α каж.; рН= - lg а(Н + )

a(ОН - )=C(l/z основание)×α каж.; рН= - lg а(ОН - )

рН= - lgC(l/z кислота) – для предельно разбавленных растворов сильных кислот

рОН= - lgC(l/z основание) - для предельно разбавленных растворов оснований

Потенциальная кислотность измеряется количеством водород-ионов, связанных в молекулахкислоты, т.е. представляет собой «запас» недиссоциированных молекул кислоты.

Общая кислотность - сумма активной и потенциальной кислотностей, которая определяется аналитической концентрацией кислоты и устанавливается титрованием

Одним из удивительных свойств живых организмов является кислотно-основной

гомеостаз - постоянство рН биологических жидкостей, тканей и организмов. В таблице 1 представлены значения рН некоторых биологических объектов.

Таблица 1

Из данных таблицы видно, что рН различных жидкостей в организме человека изменяется в довольно широких пределах в зависимости от местонахождения. КРОВЬ, как и другие биологические жидкости, стремится сохранить постоянное значение водородного показателя, значения которого представлены в таблице 2

Таблица 2

Изменения рН от указанных величин всего на 0,3 в сторону увеличения или уменьшения приводит к изменению обмена ферментативных процессов, что у человека вызывает тяжелое болезненное состояние. Изменение рН всего на 0,4 уже несовместимо с жизнью. Исследователи установили, что в регуляции кислотно-щелочного равновесия участвуют следующие буферные системы крови: гемоглобиновая, бикарбонатная, белковая и фосфатная. Доля каждой системы в буферной емкости представлена в таблице 3.

Таблица 3

Все буферные системы организма по механизму действия едины, т.к. состоят они из слабой кислоты: угольной, дигидрофосфорной (дигидрофосфат-ион), белковой, гемоглабиновый (оксогемоглобиновой) и солей этих кислот, в основном натриевых, обладающих свойствами слабых оснований. Но так как по быстроте ответной реакции бикарбонатная система в организме не имеет себе равных, то способность сохранять постоянство среды в организме рассмотрим с помощью этой системы.

Иомнное произведемние водым -- произведение концентраций ионов водорода Н+ и ионов гидроксида OH? в воде или в водных растворах, константа автопротолиза воды. Вывод значения ионного произведения воды

Вода, хотя и является слабым электролитом, в небольшой степени диссоциирует:

H2O + H2O - H3O+ + OH?илиH2O - H+ + OH?

Равновесие этой реакции сильно смещено влево. Константу диссоциации воды можно вычислить по формуле:

Концентрация ионов гидроксония (протонов);

Концентрация гидроксид-ионов;

Концентрация воды (в молекулярной форме) в воде;

Концентрация воды в воде, учитывая её малую степень диссоциации, величина практически постоянная и составляет (1000 г/л)/(18 г/моль) = 55,56 моль/л.

При 25 °C константа диссоциации воды равна 1,8Ч10?16моль/л. Уравнение (1) можно переписать как: Обозначим произведение K· = Kв = 1,8Ч10?16 моль/л·55,56 моль/л = 10?14мольІ/лІ = · (при 25 °C).

Константа Kв, равная произведению концентраций протонов и гидроксид-ионов, называется ионным произведением воды. Она является постоянной не только для чистой воды, но также и для разбавленных водных растворов веществ. C повышением температуры диссоциация воды увеличивается, следовательно, растёт и Kв, при понижении температуры -- наоборот. Практическое значение ионного произведения воды

Практическое значение ионного произведения воды велико, так как оно позволяет при известной кислотности (щёлочности) любого раствора (то есть при известной концентрации или ) найти соответственно концентрации или . Хотя в большинстве случаев для удобства представления пользуются не абсолютными значениями концентраций, а взятыми с обратными знаком их десятичными логарифмами -- соответственно, водородным показателем (pH) и гидроксильным показателем (pOH).

Так как Kв -- константа, при добавлении к раствору кислоты (ионов H+), концентрация гидроксид-ионов OH? будет падать и наоборот. В нейтральной среде = = моль/л. При концентрации > 10?7 моль/л (соответственно, концентрации < 10?7 моль/л) среда будет кислой; При концентрации > 10?7 моль/л (соответственно, концентрации < 10?7 моль/л) -- щелочной.

Электролитическая диссоциация воды. Водородный показатель рН

Вода представляет собой слабый амфотерный электролит:

Н2О Н+ + ОН-или, более точно:2Н2О Н3О+ + ОН-

Константа диссоциации воды при 25оС равна: Такое значение константы соответствует диссоциации одной из ста миллионов молекул воды, поэтому концентрацию воды можно считать постоянной и равной 55,55 моль/л (плотность воды 1000 г/л, масса 1 л 1000 г, количество вещества воды 1000г:18г/моль=55,55 моль, С=55,55 моль: 1 л = 55,55 моль/л). Тогда

Эта величина постоянная при данной температуре (25оС), она называется ионным произведением воды KW:

Диссоциация воды - процесс эндотермический, поэтому с повышением температуры в соответствии с принципом Ле-Шателье диссоциация усиливается, ионное произведение возрастает и достигает при 100оС значения 10-13.

В чистой воде при 25оС концентрации ионов водорода и гидроксила равны между собой:

10-7 моль/л Растворы, в которых концентрации ионов водорода и гидроксила равны между собой, называются нейтральными. Если к чистой воде прибавить кислоту, концентрация ионов водорда повысится и станет больше, чем 10-7 моль/л, среда станет кислой, при этом концентрация ионов гидроксила мгновенно изменится так, чтобы ионное произведение воды сохранило свое значение 10-14. Тоже самое будет происходить и при добавлении к чистой воде щелочи. Концентрации ионов водорода и гидроксила связаны между собой через ионное произведение, поэтому, зная концентрацию одного из ионов, легко вычислить концентрацию другого. Например, если = 10-3 моль/л, то = KW/ = 10-14/10-3 = 10-11 моль/л, или, если = 10-2 моль/л, то = KW/ = 10-14/10-2 = 10-12 моль/л. Таким образом, концентрация ионов водорода или гидроксила может служить количественной характеристикой кислотности или щелочности среды.

На практике пользуются не концентрациями ионов водорода или гидроксила, а водородным рН или гидроксильным рОН показателями.Водородный показатель рН равен отрицательному десятичному логарифму концентрации ионов водорода:

Гидроксильный показатель рОН равен отрицательному десятичному логарифму концентрации ионов гидроксила:

рОН = - lg

Легко показать, прологарифмировав ионное произведение воды, что

рН + рОН = 14

Если рН среды равен 7 - среда нейтральная, если меньше 7 - кислая, причем чем меньше рН, тем выше концентрация ионов водорода. pН больше 7 - среда щелочная, чем больше рН, тем выше концентрация ионов гидроксила. Чистая вода очень плохо проводит электрический ток, но всё же обладает измеримой электропроводностью, которая объясняется небольшой диссоциацией воды на ионы водорода и гидроксид-ионы. По величине электропроводности чистой воды можно определить концентрацию ионов водорода и гидроксид-ионов в воде.

Поскольку степень диссоциации воды очень мала, то концентрация недиссоциированных молекул в воде практически равна общей концентрации воды, поэтому из выражения для константы диссоциации воды получакм, что для воды и разбавленных водных растворов при неизменной температуре произведение концентраций ионов водорода и гидроксид-ионов есть величина постоянная. Эта постоянная величина называется ионным произведением воды.

Растворы, в которых концентрации ионов водорода и гидроксид-ионов одинаковы, называются нейтральными. В кисдых растворах больше ионов водорода, в щелочных - гидроксид-ионов. Но произведение их концентраций всегда постоянно. Это означает, что если известна концентрация ионов водорода в водном растворе, то тем самым и определена и концентрация гидроксид-ионов. Поэтому как степень кислотности, так и степень щёлочности раствора можно количественно охарактеризовать концентрацией ионов водорода:

Кислотность или щёлочность раствора можно выразить более удобным способом: вместо концентрации ионов водорода указывают её десятичный логарифм, взятый с обратным знаком. Последняя величина называется водородным показателем и обозначается рН:. Отсюда ясно, что в нейтральном растворе pH=7; в кислых растворах рН<7 и тем меньше, чем кислее раствор; в щелочных растворах рН>7, и тем больше, чем больше щёлочность раствора.

Для измерения рН существуют различные методы. Приближённо реакцию раствора можно определить с помощью специальных реакторов, называемых индикаторами, окраска которых меняется в зависимости от концентрации ионов водорода. Наиболее распространены метиловый оранжевый, метиловый красный, фенолфталеин и лакмус.

Очень плохо проводит электрический ток, но все же обладает некоторой измеримой электропроводностью, которая объясняется небольшой диссоциацией воды на водородныеи гидроксильные ионы:

H2O ⇄ H + OH’

По величине электропроводности чистой воды можно вычислить концентрацию ионов водорода и ионов гидроксила в воде. Она оказывается равной 10 -7 г -ион /л.

Применяя к диссоциации воды закон действия масс, можно написать:

Перепишем это уравнение следующим образом:

[ОН’] = [Н 2 O] K

Так как воды очень мала, концентрацию недиссоциированных молекул Н 2 О не только в воде, но и во всяком разбавленном водном растворе можно считать величиной постоянной. Поэтому, заменив [Н 2 O] K новой константой КН 2 О, будем иметь:

[Н] [ОН’] = К H2O

Полученное уравнение показывает, что для воды и разбавленных водных растворов при неизменной температуре произведение концентраций водородных и гидроксильных ионов есть величина постоянная. Эта постоянная величина называется ионным произведением воды. Численное значение ее нетрудно получить, подставив в последнее уравнение концентрации водородных и гидроксильных ионов

К H2O = 10 -7 10 -7 = 10 -14

Растворы, в которых концентрация водородных и концентрация гидроксильных ионов одинаковы и равны каждая 10 7 г-ион/л, называются нейтральными растворами. В кислых растворах больше концентрация водородных ионов, в щелочных - концентрация гидроксильных ионов. Но какова бы ни была реакция раствора, произведение концентраций H и ОН’-ионов должно оставаться постоянным.

Если, например, к чистой воде прибавить столько кислоты, чтобы концентрация водородных ионов повысилась до 10 -3 , концентрация гидроксильных ионов должна будет понизиться так, чтобы произведение [Н ] [ОН’] осталось равным 10 -14 . Следовательно, в этом растворе концентрация гидроксильных ионов будет:

10 -14: 10 -3 = 10 -11

Наоборот, если прибавить к воде щелочи и тем повысить концентрацию гидроксильных ионов, например, до 10 -5 , концентрация водородных ионов станет равна:

10 -14: 10 -5 = 10 -9

Вы читаете, статья на тему Диссоциация воды

Электролитическая диссоциация воды. Водородный показатель

Вода является слабым электролитом, который диссоциирует по уравнению: .

Это явление принято называть самоионизацией или автопротолизом.

Константа диссоциации воды при 25 0 С составляет:

Так как константа диссоциации воды очень мала, можно считать концентрацию воды постоянной величиной:

(при 295 К)

Величина K w принято называть ионным произведением воды.

Ионное произведение воды характеризует равновесие между ионами водорода и гидроксид-ионами в водных растворах и является постоянной при данной температуре величиной.

Кислотность или основность водного раствора должна быть выражена концентрацией ионов водорода или гидроксид-ионов. Чаще всœего для этой цели используют величину рН, которая связана с концентрацией ионов водорода следующим соотношением:

В нейтральной среде:

В кислой среде:

В щелочной среде:

Расчёт рН и рОН растворов сильных и слабых электролитов.

Концентрацию ионов Н + определяют по уравнению Оствальда: = ; аналогично для гидроксила: [ОH – ]= ;

Свойство растворов сохранять определœенное значение рН принято называть буферным действием. Растворы, обладающие буферными свойствами, называют буферными.

В широком смысле буферными называют системы, поддерживающие определœенное значение какого-либо параметра при изменении состава. Буферные растворы бывают кислотно – основные – поддерживают постоянство рН при введении кислот или оснований, окислительно – восстановительными – сохраняют постоянным потенциал систем при введении окислителœей или восстановителœей. Буферный раствор представляет собой сопряженную пару. К примеру:

1. слабая кислота и соль этой кислоты и сильного основания (уксусная кислота и ацетат натрия – ацетатный буфер)

2. слабое основание и соль этого основания и сильной кислоты (гидроксид аммония и хлорид аммония – аммиачный буфер)

3. растворы, содержащие соли многобазовых кислот (гидрофосфат натрия и дигидрофосфат натрия – фосфатный буфер)

Рассмотрим механизм поддержания рН в ацетатном буфере. Там протекаю реакции:

СН 3 СООН ↔ СН 3 СОО -­ + Н +

СН 3 СООNa ↔ СН 3 СОО -­ + Na +

Первая реакция практически полностью подавляется из-за большой концентрации ацетат ионов, вызванной диссоциацией сильного электролита – ацетата натрия.

В случае если к раствору добавить сильную кислоту, то ионы водорода будут взаимодействовать с анионами с образованием молекул уксусной кислоты и реакция среды не изменится. В случае если к раствору добавить сильное основание, то гидроксид-ионы будут взаимодействовать с ионами водорода (или молекулами уксусной кислоты). Образование воды не повлияет на рН среды. Пошедшие на реакцию с ОН – ионами ионы водорода будут компенсированы за счёт смещения равновесия реакции диссоциации уксусной кислоты вправо.

Константа электролитической диссоциации уксусной кислоты:

Значение концентрации водородных ионов:

Степень электролитической диссоциации уксусной кислоты незначительна, в связи с этим в растворе преобладают ее недиссоциированные молекулы. Концентрация недиссоциированных молекул будет почти равна концентрации кислоты. Тогда концентрацию недиссоциированной кислоты можно заменить общей концентрацией кислоты в растворе:

[СН 3 СООН] = [кислота],

а концентрацию ацетатных ионов - концентрацией соли в растворе:

[СН 3 СОО -­ ] = [соль].

Подставив эти величины в выражение (2), получим уравнение расчёта [Н + ] для буферного раствора:

Величина К (константа электролитической диссоциации кислоты) при данных условиях постоянна.

Прологарифмируя уравнения получим:

рК – отрицательный логарифм константы диссоциации уксусной кислоты.

Применяя такие же рассуждения, для смеси слабого основания и соли сильной кислоты можно вывести уравнение:

Из уравнений следует, что рН буфера зависит от величины константы слабой кислоты или слабого основания, а также от соотношения концентраций компонентов буферных смесей.

Поскольку константа электролитической диссоциации при данных условиях постоянна, то рН буферного раствора будет зависеть только от отношения концентрации кислоты (или основания) и соли, взятых для приготовления буферной смеси. и не зависит от абсолютного значения этих концентраций. Опыт показывает, что даже при значительном разбавлении буферных растворов в 10-20 раз рН мало изменяется.

Способность буферных растворов противодействовать резкому изменению рН ограничена. Предел, в котором проявляется буферное действие, принято называть буферной емкостью (В). Численно буферная емкость определяется количеством моль-эквивалентов сильной кислоты или основания, ĸᴏᴛᴏᴩᴏᴇ нужно добавить к 1 л буферной смеси, чтобы изменить величину рН на единицу.

Величина буферной емкости зависит от концентрации компонентов буферной смеси и их отношения. Чем выше концентрация компонентов буферной смеси, тем больше ее емкость. Максимальное буферное действие наблюдается в случае, в случае если кислота и соль находятся в растворе в эквивалентных количествах.

Наличие буферных смесей в живых организмах определяет постоянство рН крови, молока, клеточного сока растений. Карбонатная и фосфатная буферные системы имеют большое значение в регулировании биохимических процессов в организме, почве.

Лекция 5ʼʼСлабые и сильные электролитыʼʼ

Электролиты - ϶ᴛᴏ вещества, растворы которых проводят электрический ток посредством ионов, на которые они распадаются под действием полярных молекул растворителя.

Количественной характеристикой диссоциации электролита является степень диссоциации , которая равна отношению числа продиссоциировавших молекул к общему числу молекул:

По степени диссоциации различают сильные электролиты слабые электролиты и электролиты средней силы

Электролитическая диссоциация воды. Водородный показатель - понятие и виды. Классификация и особенности категории "Электролитическая диссоциация воды. Водородный показатель" 2017, 2018.