Как скрещивают растения. Любимые цветы

Часто неспециалисты с подозрением относятся к гибридным растениям, не подозревая о том, что многие культуры, выращиваемые ими на своих садовых участках, - результат многолетних трудов селекционеров.

У двудомных растений, таких как шпинат, при выращивании на одном участке у одного из сортов нужно удалить мужские растения.

Скрещивание перекрестноопыляющихся культур на изолированных участках намного минимизирует трудозатраты: опыление происходит естественным путем – ветром или насекомыми. Кроме того, на одном изолированном участке возможно размесить несколько растений одного сорта, таким образом, увеличив число полученных гибридных семян. Существенный недостаток такого метода состоит в невозможности полностью исключить попадание посторонней пыльцы. Кроме того, при естественном перекрестном примерно половина растений оказывается оплодотворена пыльцой своего сорта.

В регионах с теплым климатом, где период вегетации достаточно продолжителен, для растений с быстро отцветающими цветками можно использовать изоляцию во временных интервалах: на одном и том же участке проводятся разные комбинации скрещивания. Разные сроки цветения исключают незапланированное переопыление.

В селекционной практике при отсутствии достаточного пространства для организации отдельных участков применяются изоляционные сооружения:

  • Конструкция выполняется в виде каркаса, который обтягивается легкой прозрачной тканью.
  • Для изоляции отдельных побегов или соцветий изготавливаются небольшие "домики" из пергаментной бумаги или марли, которыми обтягивают каркас из проволоки.

Для растений, опыляемых насекомыми, при сооружении изоляторов лучше использовать такие материалы, как батист или марля, для ветроопыляемых культур – пергаментную бумагу.

Процесс гибридизации – скрещивания растений – направлен на получение сортов растений, обладающих выигрышными свойствами родительских сортов, таких как:

  • Высокая урожайность
  • Устойчивость к
  • Морозоустойчивость
  • Засухоустойчивость
  • Короткие сроки созревания

К примеру, если у отцовского и материнского растения устойчивость к разным , то полученный гибрид унаследует стойкость к обоим болезням.

Гибридные сорта растений обладают лучшей жизнестойкостью, они меньше подвержены перепадам температуры, влажности, изменения климатических условий, чем их негибридные собратья.

Больше информации можно узнать из видео.

Спрашивает Олег
Отвечает Елена Титова, 01.12.2013


Олег спрашивает: "Здравствуйте, Елена! Скажите, пожалуйста, скрещивание учёными различных видов растений, овощей и фруктов не является ли вмешательством в творение Божье и грехом? Успешные подобные скрещивания не ставят ли под удар Креационизм? Ведь если получилось скрестить различные растения, то со временем получится скрестить и различных животных, кошку с собакой, например. А значит есть вероятность того, что из одного более простого живого существа появилось более сложное и так вплоть до появления человека?".

Приветствую, Олег!

Ученые-селекционеры в основном проводят внутривидовые скрещивания (гибридизацию) для появления желательных признаков (для человека, конечно) у животных, растений и микроорганизмов, чем добиваются создания новых или улучшенных пород, сортов, штаммов.

Внутри вида скрещивание особей идет относительно легко из-за сходства их генетического материала и анатомо-физиологических особенностей. Хотя это не всегда так, например, в естественных условиях невозможно скрещивание крохотной собачки чихуахуа и огромного мастифа.

А вот уже на пути скрещивания особей разных видов (а тем более разных родов) встают молекулярно-генетические барьеры, препятствующие развитию полноценных организмов. И выражены они тем сильнее, чем дальше отстоят друг от друга скрещиваемые виды и роды. В силу значительно различающихся геномов родителей у гибридов могут возникать несбалансированные наборы хромосом, неблагоприятные сочетания генов, нарушаться процессы деления клеток и образования гамет (половых клеток), может произойти гибель зиготы (оплодотворенной яйцеклетки) и др. Гибриды могут быть частично или полностью стерильны (бесплодны), с пониженной жизнеспособностью вплоть до летальности (хотя в некоторых случаях в первом поколении наблюдается резкое усиление жизнеспособности – гетерозис), могут появляться аномалии развития, в частности, репродуктивных органов, или так называемые химерные ткани (генетически разнородные) и т.д. Видимо, поэтому Господь предупреждал Свой народ: "... скота твоего не своди с иною породою; поля твоего не засевай двумя родами [семян]" ().

В естественных условиях случаи межвидового скрещивания крайне редки.

Примеры искусственной отдаленной гибридизации есть: мул (лошадь+осел), бестер (белуга+стерлядь), лигр (лев+тигрица), тайгон (тигр+львица), леопон (лев+самка леопарда), плумкот (слива+абрикос), клементин (апельсин+мандарин) и др. В некоторых случаях ученым удается снять негативные последствия отдаленной гибридизации, например, получены плодовитые гибриды пшеницы и ржи (тритикале), редьки и капусты (рафанобрассика).

А теперь Ваши вопросы. Является ли искусственная гибридизация вмешательством в Божье творение? В определенном смысле – да, если человек создает вариант, отличный от природного, что можно сравнить, скажем, с использованием женщинами декоративной косметики для улучшения своего внешнего вида. Является ли искусственная гибридизация грехом? А потребление мясной пищи является грехом? Господь по жестокосердию нашему допускает умерщвление живых существ ради пищи. Вероятно, также по нашему жестокосердию он допускает и селекционное экспериментирование ради улучшения потребительских свойств нужных людям продуктов. В этом же ряду – и создание лекарственных препаратов (при этом используются и умерщвляются лабораторные животные). Как ни печально, все это реальная действительность общества, где царит грех и правит «князь мира сего».

Ставят ли успешные скрещивания под удар креационизм? Ни в коей мере. Напротив.

Вы знаете, что все размножается «по роду своему». Библейский «род» не есть биологический вид современной систематики. Ведь богатое разнообразие видов появилось после Потопа вследствие произошедшей изменчивости признаков наземных организмов из Ноева ковчега и водных обитателей, выживших вне ковчега, при адаптировании их к новым условиям окружающей среды. Сложно очертить библейский «род», генетический потенциал которого значителен и был задан изначально при сотворении. Он может включать такие современные таксоны, как вид и род, но, вероятно, не выше (под)семейства. Возможно, например, что большие кошки из современных систематических родов семейства кошачьи восходят к одному исходному «роду», а мелкие кошачьи – к одному или двум другим. Понятно, что выделившиеся из библейского «рода» виды и роды включают свой в некоторой степени обедненный и измененный (по отношению к исходному) генетический материал. Сочетание этих не вполне комплементарных частей (в межвидовых и межродовых скрещиваниях) встречает препятствия на молекулярно-генетическом уровне, а значит, не позволяет дать начало полноценному организму, хотя в редких случаях в пределах библейского «рода» такое может получиться.

О чем это говорит? О том, что никаких скрещиваний «кошки с собакой» и «вплоть до человека» не может быть в принципе.

Еще момент. Сравните 580 тысяч нуклеотидных пар, 482 гена в ДНК одноклеточной микоплазмы и 3,2 миллиарда нуклеотидных пар, порядка 30 тысяч генов в ДНК человека. Если вообразить гипотетический путь «от амебы до человека», задумайтесь, откуда появлялась новая генетическая информация? Естественным путем ей взяться неоткуда. Мы знаем, что информация возникает только из разумного источника. Так кто же Автор амебы и человека?

Божьих благословений!

Читайте еще по теме "Творение":

Довольно часто неспециалисты с подозрением относятся к гибридным растениям, не подозревая о том, что многие культуры, выращиваемые ими на собственных садовых участках, — итог долгих трудов селекционеров.

  • Разработка скрещивания
  • Преимущества скрещивания

Что такое скрещивание растений

Гибридизация либо скрещивание растений – это один из главных способов селекции растений. Сущность способа содержится в скрещивании двух растений различных сортов, видов либо родов.

Результатом, что зависит от подбора родительских растений, есть получение видов и новых сортов.

К примеру, немногие знают, что в природе не существовало таких культур, как слива либо садовая земляника. Слива была взята методом алычи и скрещивания тёрна, а садовая земляника, либо как ее неправильно именуют, клубника, — итог скрещивания диких видов земляники – виргинской и чилийской.

Разработка скрещивания

Разработка скрещивания содержится в неестественном либо естественном переносе пыльцы с растения одного сорта либо вида на второе, проводимое под тщательным контролем.

В это время принципиально важно изолировать цветки, дабы исключить попадание посторонней пыльцы.

Метод скрещивания:

  1. Выбрать два растения различных сортов либо видов.
  2. На материнском растении подобрать самый комфортно расположеные цветки.
  3. Нераспустившиеся (за один сутки до распускания) бутоны бережно вскрыть.
  4. Пинцетом шепетильно удалить все тычинки с пыльцой.
  5. Цветки с удаленными тычинками обернуть белой узкой материей чтобы не было незапланированного опыления.
  6. За сутки до удаления тычинок с одного растения со второго (отцовского) с бутонов, планирующих распускаться, собрать пыльцу в стеклянную баночку.
  7. Баночку закрывают марлей либо яркой прозрачной тканью и ставят в сухое место.

Через день после удаления тычинок с материнского растения выполняют оплодотворение:

  • Лучший результат – первая добрая половина дня до двенадцать часов.
  • Встряхнуть баночку с пыльцой.
  • Осевшую на стены банки пыльцу ватной палочкой либо вторым подручным средством (возможно, кроме того пальцем) бережно наносят на рыльце пестика материнского растения.
  • Оплодотворенный цветок опять накрыть яркой узкой тканью либо марлей.
  • Оплодотворение повторять 3 дня.

Оплодотворенные цветки должны быть укрыты на целый период роста впредь до созревания плодов. Лишние цветки рекомендуется удалить. По окончании сбора созревших плодов они должны вылежаться от нескольких недель до нескольких месяцев в зависимости от времени срока и созревания хранения культуры.

Семена косточковых растений высеваются сходу на гряды, семечковые летнего созревания по окончании трехдневной просушки высеваются в песке на грядки в осеннюю пору. Семена растений, каковые созревают в осеннюю пору, собирают, в то время, когда плоды уже начинают портиться, но не позднее апреля. По окончании просушки и сбора их высевают в подготовленные емкости.

Пространственная и временная изоляция при скрещивании

При скрещивании перекрестноопыляющихся культур возможно использовать пространственную изоляцию: растения выращиваются на различных, удаленных от растений данного сорта, участках. К таким культурам относятся морковь, капуста, свекла и др.

У двудомных растений, таких как шпинат, при выращивании на одном участке у одного из сортов необходимо удалить мужские растения.

Скрещивание перекрестноопыляющихся культур на изолированных участках намного минимизирует трудозатраты: опыление происходит естественным методом – ветром либо насекомыми. Помимо этого, на одном изолированном участке вероятно размесить пара растений одного сорта, так, увеличив число взятых гибридных семян. Значительный недочёт для того чтобы способа пребывает в неосуществимости всецело исключить попадание посторонней пыльцы.

Помимо этого, при естественном перекрестном опылении приблизительно добрая половина растений выясняется оплодотворена пыльцой собственного сорта.

В регионах с теплым климатом, где период вегетации достаточно продолжителен, для растений с скоро отцветающими цветками возможно применять изоляцию во временных промежутках: на одном и том же участке проводятся различные комбинации скрещивания. Различные сроки цветения исключают незапланированное переопыление.

В селекционной практике при отсутствии достаточного пространства для организации отдельных участков используются изоляционные сооружения:

  • Конструкция выполняется в виде каркаса, что обтягивается легкой прозрачной тканью.
  • Для изоляции отдельных побегов либо соцветий изготавливаются маленькие домики из пергаментной бумаги либо марли, которыми обтягивают каркас из проволоки.

Для растений, опыляемых насекомыми, при сооружении изоляторов лучше применять такие материалы, как батист либо марля, для ветроопыляемых культур – пергаментную бумагу.

Преимущества скрещивания

Процесс гибридизации – скрещивания растений – направлен на получение сортов растений, владеющих выигрышными особенностями родительских сортов, таких как:

  • Высокая урожайность
  • Устойчивость к болезням
  • Морозостойкость
  • Засухоустойчивость
  • Маленькие сроки созревания

К примеру, в случае если у отцовского и материнского растения устойчивость к различным болезням, то полученный гибрид унаследует стойкость к обоим заболеваниям.

Гибридные сорта растений владеют лучшей жизнестойкостью, они меньше подвержены перепадам температуры, влажности, трансформации климатических условий, чем их негибридные собратья.

Чистые сорта!!! либо гибриды!!! что выбрать?

Увлекательные заметки:

Подобранные по важим запросам, релевантные статьи:

    Огурцы постоянно являлись неотъемлемым элементом рациона каждого человека. Их разведение считается одной из самых основных задач садовода. Летний салат немыслим…

Селекция - наука, разрабатывающая пути создания новых и улучшения существующих сортов растений, пород животных и штаммов микроорганизмов.

Создание новых сортов и пород основывается на таких важнейших свойствах живого организма, как наследственность и изменчивость. Именно поэтому генетика - наука об изменчивости и наследственности организмов - является теоретической основой селекции.

Имея свои собственные задачи и методы, селекция твердо опирается на законы генетики, является важной областью практического использования закономерностей, установленных генетикой. Вместе с тем селекция опирается и на достижения других наук. На сегодняшний день генетика вышла на уровень целенаправленного конструирования организмов с нужными признаками и свойствами.

Сорт, порода и штамм - устойчивая группа организмов, искусственно созданная человеком и имеющая определенные наследственные особенности.

Все особи внутри породы, сорта и штамма имеют сходные, наследственно закрепленные морфологические, физиолого-биохимические и хозяйственные признаки и свойства, а также однотипную реакцию на факторы внешней среды.

Основные направления селекции:

  • высокая урожайность сортов растений, плодовитость и продуктивность пород животных;
  • улучшение качества продукции (например, вкус, внешний вид плодов и овощей, химический состав зерна - содержание белка, клейковины, незаменимых аминокислот и т. д.);
  • физиологические свойства (скороспелость, засухоустойчивость, зимостойкость, устойчивость к болезням, вредителям и неблагоприятным климатическим условиям).
  • выведение стрессоустойчивых пород (для разведения в условиях большой скученности - на птицефабриках, фермах и т. п.);
  • пушное звероводство;
  • рыбоводство - разведение рыбы в искусственных водоемах.

ОТЛИЧИЕ КУЛЬТУРНЫХ ФОРМ ОТ ДИКИХ

Культурные формы Дикие формы
развиты признаки, полезные для человека и часто вредные в естественных условиях наличие признаков, неудобных для человека (агрессивность, колючесть и т. п.)
высокая продуктивность низкая продуктивность (мелкие плоды; низкая масса, яйценоскость, удойность)
хуже адаптируются к меняющимся условиям среды высокая адаптивность
не имеют средств защиты от хищников и вредителей (горьких или ядовитых веществ, шипов, колючек и т. п.) наличие естественных защитных приспособлений, повышающих жизнестойкость, но неудобных для человека

основные методы селекции

Основные методы селекции:

  • подбор родительских пар
  • отбор
  • гибридизация
  • искусственный мутагенез

Подбор родительских пар

Данный метод применяется прежде всего в селекции животных, т. к. для животных характерно половое размножение и немногочисленное потомство.

Выведение новой породы - процесс длительный, требующий больших материальных затрат. Это может быть целенаправленное получение определенного экстерьера (совокупности фенотипических признаков), повышение молочности, жирности молока, качества мяса и т. д.

Разводимые животные оцениваются не только по внешним признакам, но и по происхождению и качеству потомства . Поэтому необходимо хорошо знать их родословную. В племенных хозяйствах при подборе производителей всегда ведется учёт родословных, в которых оцениваются экстерьерные особенности и продуктивность родительских форм в течение ряда поколений.

работы И. В. Мичурина

Особое место в практике улучшения плодово-ягодных культур занимает селекционная работа И. В. Мичурина. Большое значение он придавал подбору родительских пар для скрещивания. При этом он не использовал местные дикорастущие сорта (так как они обладали стойкой наследственностью, и гибрид обычно уклонялся в сторону дикого родителя), а брал растения из других, отдалённых географических мест и скрещивал их друг с другом.

Важным звеном в работе Мичурина было целенаправленное воспитание гибридных сеянцев: в определённый период их развития создавались условия для доминирования признаков одного из родителей и подавления признаков другого, т. е. эффективное управление доминированием признаков (разные приёмы обработки почвы, внесение удобрений, прививки в крону другого растения и т. п.).

Метод ментора - воспитание на подвое. В качестве привоя Мичурин брал как молодое растение, так и почки от зрелого плодоносящего дерева. Этим методом удалось придать желаемую окраску плодам гибрида вишни с черешней под названием «Краса севера».

Мичурин применял также отдалённую гибридизацию. Им получен своеобразный гибрид вишни и черемухи - церападус, а также гибрид терна и сливы, яблони и груши, персика и абрикоса. Все мичуринские сорта поддерживают путём вегетативного размножения.

Отбор

Искусственный отбор - сохранение для дальнейшего размножения особей с интересующими селекционера признаками. Формы отбора: массовый и индивидуальный.

  • Интуитивный (бессознательный) отбор - самая древняя форма отбора, используемая ещё древним человеком: отбор особей по фенотипу, т.е. с наиболее полезными сочетаниями признаков.
  • Методический отбор - отбор для размножения особей с чётко определёнными признаками, согласно цели и с учетом их фенотипов и генотипов.
  • Массовый отбор - устранение из размножения особей, не имеющих ценные признаки, либо имеющих нежелательные признаки (например, агрессивных).

Массовый отбор может быть эффективен в том случае, если отбираются качественные, просто наследуемые и легко определяемые признаки. Массовый отбор обычно проводят среди перекрестноопыляемых растений. При этом селекционеры отбирают растения по фенотипу с интересующими их признаками. Недостаток массового отбора заключается в том, что селекционер не всегда может определить лучший генотип по фенотипу.

  • Индивидуальный отбор - выделение отдельных особей с интересующими человека признаками и получение от них потомства.

Индивидуальный отбор более эффективен при отборе особей по количественным, сложно наследуемым признакам. Этот вид отбора позволяет точно оценить генотип благодаря анализу наследования признаков у потомства. Индивидуальный отбор применяют по отношению к самоопыляемым растениям (сорта пшеницы, ячменя, гороха и др.).

Гибридизация

В селекционной работе с животными применяют в основном два способа скрещивания: инбридинг и аутбридинг .

Инбридинг - скрещивание близкородственных форм: в качестве исходных форм используются братья и сестры или родители и потомство.

Результат: получение гомозиготных организмов → разложение исходной формы на ряд чистых линий.

Минусы: пониженная жизнеспособность (рецессивные гомозиготы зачастую несут наследственные заболевания).

Такое скрещивание в определённой степени аналогично самоопылению у растений, которое также приводит к повышению гомозиготности и, как следствие, к закреплению хозяйственно ценных признаков у потомков. При этом гомозиготизация по генам, контролирующим изучаемый признак, происходит тем быстрее, чем более близкородственное скрещивание используют при инбридинге. Однако гомозиготизация при инбридинге, как и в случае растений, ведет к ослаблению животных, снижает их устойчивость к воздействию среды, повышает заболеваемость.

В селекции инбридинг обычно является лишь одним из этапов улучшения породы. За ним следует скрещивание разных межлинейных гибридов, в результате которого нежелательные рецессивные аллели переводятся в гетерозиготное состояние и вредные последствия близкородственного скрещивания заметно снижаются.

Аутбридинг - неродственное скрещивание между особями одной породы или разных пород животных в пределах одного вида.

Результат: получение большого количества гетерозиготных организмов → поддержание полезных качеств и усиление их выраженности в ряду следующих поколений.

Отдалённая гибридизация - получение межвидовых и межродовых гибридов.

Отдалённая гибридизация в селекции животных применяется значительно реже, чем в селекции растений.

Межвидовые и межродовые гибриды животных и растений чаще всего бесплодны, так как нарушается мейоз и гаметогенез не происходит. При этом восстановление плодовитости у животных представляет более сложную задачу, поскольку получение полиплоидов на основе умножения числа хромосом у них невозможно.

Преодоление бесплодия межвидовых гибридов растений впервые удалось осуществить в начале 20-х годов ХХ века советскому генетику Г. Д. Карпеченко при скрещивании редьки и капусты. Это вновь созданное человеком растение не было похоже ни на редьку, ни на капусту. Стручки занимали как бы промежуточное положение и состояли из двух половинок, из которых одна напоминала стручок капусты, другая - редьки. Каждая из исходных форм имела в половых клетках по 9 хромосом. В этом случае клетки полученного от них гибрида имели 18 хромосом. Но некоторые яйцеклетки и пыльцевые зёрна содержали все 18 хромосом (диплоиды), а при их скрещивании создано растение с 36 хромосомами, которое оказалось плодовитым. Так была доказана возможность использования полиплоида для преодоления нескрещиваемости и бесплодия при отдалённой гибридизации.

Бывает, что бесплодны особи только одного пола. Например, у гибридов высокогорного быка яка и рогатого скота бесплодны (стерильны) самцы, а самки плодовиты (фертильны).

Но иногда гаметогенез у отдалённых гибридов протекает нормально, что позволило получить новые ценные породы животных. Примером являются архаромериносы, которые, как и архары (горные бараны), могут пастись высоко в горах, а как мериносы дают хорошую шерсть. Получены плодовитые гибриды от скрещивания местного (индийского) крупного рогатого скота с зебу. При скрещивании белуги и стерляди получен плодовитый гибрид - бестер, хорька и норки - хонорик, продуктивен гибрид между карпом и карасём.

В природе встречаются гибриды зебры и лошади (зеброид), бизона и зубра (зубробизон), тетерева и куропатки (межняк), зайца-русака и зайца-беляка (тумак), соболя и лисицы (кидус), а также тигра и льва (лигр).

В качестве примеров межродовых гибридов растений можно назвать гибрид пшеницы и ржи (тритикале), пшенично-пырейный гибрид, гибрид смородины и крыжовника (йошта), гибрид брюквы и кормовой капусты (куузика), гибриды озимой ржи и житняка, травянистого и древовидного томатов и др.

Гетерозис - явление повышенной жизнеспособности, урожайности, плодовитости гибридов первого поколения, превышающих по этим параметрам обоих родителей.

Уже со второго поколения гетерозисный эффект угасает. По-видимому, это происходит вследствие снижения числа гетерозиготных организмов и повышения доли гомозигот.

Классическими примерами проявления гетерозиса являются мул (гибрид кобылы и осла) и лошак (гибрид коня и ослицы) (рис. 1,2) . Это сильные, выносливые животные, которые могут использоваться в значительно более трудных условиях, чем родительские формы.

Рис. 1. Мул Рис. 2. Лошак

Продолжительность их жизни значительно выше, чем у родительских видов.

Лошак меньше мула ростом и строптив, поэтому менее удобен для использования в хозяйственной деятельности человека.

Гетерозис широко применяют в промышленном птицеводстве, например - бройлерные цыплята, отличающиеся очень быстрым ростом. Цыплёнок-бройлер - финальный гибрид, полученный в результате скрещивания нескольких линий разных пород кур (мясных родительских форм), проверенных на сочетаемость. Первоначально для такого скрещивания использовали породы корниш (в качестве отцовской формы) и белый плимутрок (в качестве материнской формы).

искусственный мутагенез

Искусственный мутагенез чаще всего используется как метод селекции растений. Он основан на применении физических и химических мутагенов для получения форм растений с выраженными мутациями. Такие формы в дальнейшем используются для гибридизации или отбора.

В селекции растений широко используется полиплоидия.

Полиплоидия - увеличение числа наборов хромосом в клетках организма, кратное гаплоидному (одинарному) числу хромосом; тип геномной мутации.

Половые клетки большинства организмов гаплоидны (содержат один набор хромосом - n), соматические - диплоидны (2n). Организмы, клетки которых содержат более двух наборов хромосом, называются полиплоидами, три набора - триплоидами (3n), четыре - тетраплоидами (4n) и т. д. Наиболее часто встречаются организмы с числом хромосомных наборов, кратным двум, - тетраплоиды, гексаплоиды (6n) и т. д.

Полиплоиды с нечётным числом наборов хромосом (триплоиды, пентаплоиды и т. д.) обычно не дают потомства (стерильны), т. к. образуемые ими половые клетки содержат неполный набор хромосом - не кратный гаплоидному.

появление полиплоидии

Полиплоидия может возникнуть при нерасхождении хромосом в мейозе. В этом случае половая клетка получает полный (нередуцированный) набор хромосом соматической клетки (2n). При слиянии такой гаметы с нормальной (n) образуется триплоидная зигота (3n), из которой развивается триплоид. Если обе гаметы несут по диплоидному набору, возникает тетраплоид. Полиплоидные клетки могут возникнуть в организме при незавершённом митозе: после удвоения хромосом деления клетки может не происходить, и в ней оказываются два набора хромосом. У растений тетраплоидные клетки могут дать начало тетраплоидным побегам, цветки которых будут вырабатывать диплоидные гаметы вместо гаплоидных. При самоопылении может возникнуть тетраплоид, при опылении нормальной гаметой - триплоид. При вегетативном размножении растений сохраняется плоидность исходного органа или ткани.

Благодаря полиплоидии выведены высокоурожайные полиплоидные сорта сахарной свеклы, хлопчатника, гречихи и др. Полиплоидные растения часто более жизнеспособны и плодовиты, чем нормальные диплоиды. О их большей устойчивости к холоду свидетельствует увеличение числа видов-полиплоидов в высоких широтах и в высокогорьях.

Поскольку полиплоидные формы часто обладают ценными хозяйственными признаками, искусственную полиплоидизацию применяют в растениеводстве для получения исходного селекционного материала.

Получение полиплоидов в эксперименте тесно связано с искусственным мутагенезом. С этой целью используют специальные мутагены (например, алкалоид колхицин), нарушающие расхождение хромосом в митозе и мейозе.

Получены урожайные полиплоиды ржи, гречихи, сахарной свёклы и других культурных растений; стерильные триплоиды арбуза, винограда, банана популярны благодаря бессемянным плодам.

Применение отдалённой гибридизации в сочетании с искусственной полиплоидизацией позволило отечественным учёным получить плодовитые полиплоидные гибриды растений (Г. Д. Карпеченко, гибрид-тетраплоид редьки и капусты) и животных (Б. Л. Астауров, гибрид-тетраплоид тутового шелкопряда).

Шелкопряды Астаурова

Очень редки случаи естественной полиплоидии у животных. Однако, академик Б. Л. Астауров разработал метод искусственного получения полиплоидов от межвидового гибрида шелкопрядов Bombyx mori и В. mandarina. У обоих этих видов n = 28 хромосомам.

При синтезировании тетраплоида использовался метод искусственного партеногенеза. Вначале были получены партеногенетические полиплоиды В. mori - 4 n, 6 n. Все полученные особи оказались фертильными (плодовитыми) самками.

Затем произвели скрещивание партеногенетических самок В. mori (4n) с самцами другого вида В. mandarina (2n). В потомстве от такого скрещивания появлялись триплоидные самки 2n В. mori + 1 n В. mandarina.

Эти самки, стерильные в обычных условиях, размножались путем партеногенеза. При этом партеногенетически иногда возникали 6n самки (4n В. mori + 2n В. mandarina).

В потомстве от скрещивания этих самок с 2n самцами В. mandarina были отобраны 4n формы обоего пола с удвоенным набором хромосом каждого вида (2n В. mori +2n В. mandarina).

Если гибрид 1n В. mori + 1n В. mandarina был бесплодным, то тетраплоид (4n) оказался плодовитым и при разведении дал плодовитое потомство. С помощью полиплоидии, таким образом, удалось синтезировать новую форму шелкопряда.

биотехнология

Биотехнология - наука, изучающая возможность модификации биологических организмов для обеспечения потребностей человека.

Применение биотехнологии (рис. 3):

  • производство лекарств, удобрений, средств биологической защиты растений;
  • биологическая очистка сточных вод;
  • восстановление ценных металлов из морской воды;
  • коррекция и исправление генетических патологий.

Рис. 3. Возможности биотехнологии

Например, включение в геном кишечной палочки гена, ответственного за образование у человека инсулина, позволило наладить промышленное получение этого гормона (рис. 4).

Рис. 4. Биотехнология получения инсулина

В биотехнологии успешно применяются методы генной и клеточной инженерии.

ГЕННАЯ И КЛЕТОЧНАЯ ИНЖЕНЕРИЯ

Генная инженерия - искусственное, целенаправленное изменение генотипа микроорганизмов с целью получения культур с заранее заданными свойствами.

Исследования в области генной инженерии распространяются не только на микроорганизмы, но и на человека. Они особенно актуальны при лечении болезней, связанных с нарушениями в иммунной системе, в системе свертывания крови, в онкологии.

Основной метод генной инженерии: выделение необходимых генов, их клонирование и введение в новую генетическую среду. Например, введение определённых генов с помощью плазмиды в организм бактерии для синтеза ею определённого белка (рис. 5).

Рис. 5. Применение генной инженерии

Основные этапы решения генно-инженерной задачи следующие:

  1. Получение изолированного гена.
  2. Введение гена в вектор (плазмиду) для переноса в организм.
  3. Перенос вектора с геном (рекомбинантной плазмиды) в модифицируемый организм.
  4. Преобразование клеток организма.
  5. Отбор генетически модифицированных организмов и устранение тех, которые не были успешно модифицированы.

Клеточная инженерия - это направление в науке и селекционной практике, которое изучает методы гибридизации соматических клеток, принадлежащих разным видам, возможности клонирования тканей или целых организмов из отдельных клеток.

Включает культивирование и клонирование клеток на специально подобранных средах, гибридизацию клеток, пересадку клеточных ядер и другие микрохирургические операции по «разборке» и «сборке» (реконструкции) жизнеспособных клеток из отдельных фрагментов.

На данный момент удалось получить гибриды между клетками животных, далёких по систематическому положению, например мыши и курицы. Соматические гибриды нашли широкое применение как в научных исследованиях, так и в биотехнологии.

Гибридные клетки, полученные от клеток человека и мыши и человека и китайского хомячка, участвовали в расшифровке генома человека.

Гибриды между опухолевыми клетками и лимфоцитами обладают свойствами обеих родительских клеточных линий: они неограниченно делятся и могут вырабатывать определённые антитела. Такие антитела применяют в лечебных и диагностических целях в медицине.

В эмбриологии для изучения процессов дифференцировки клеток и тканей в ходе онтогенеза используют организмы- химеры , состоящие из клеток с разными генотипами . Их создают путём соединения клеток разных зародышей на ранних этапах их развития.

Клонирование животных - ещё один метод клеточной инженерии: ядро соматической клетки пересаживают в лишённую ядра яйцеклетку с последующим выращиванием зародыша во взрослый организм.

Преимущество клеточной инженерии в том, что она позволяет экспериментировать с клетками, а не с целыми организмами.

Методы клеточной инженерии часто применяют в сочетании с генной инженерией.

работы Н. И. Вавилова

Николай Иванович Вавилов - российский генетик, растениевод, географ.

  1. Н. И. Вавилов организовал 180 экспедиций (20−30 гг. ХХ века) по самым труднодоступным и зачастую опасным районам земного шара с целью изучения многообразия и географического распространения культурных растений.
  2. Им была собрана уникальная, самая крупная в мире коллекция культурных растений (к 1940 г. коллекция включала 300 000 образцов), которые ежегодно размножаются в коллекциях Всероссийского института растениеводства имени Н. И. Вавилова (ВИР) и широко используются селекционерами как исходный материал для создания новых сортов зерновых, плодовых, овощных, технических, лекарственных и других культур.
  3. Создал учение об иммунитете растений.

    Н. И. Вавилов подразделял иммунитет растений на структурный (механический) и химический. Механический иммунитет растений обусловлен морфологическими особенностями растения-хозяина, в частности, наличием защитных приспособлений, которые препятствуют проникновению патогенов в тело растений. Химический иммунитет зависит от химических особенностей растений.

  4. Закон гомологических рядов наследственной изменчивости: у генетически близких видов и родов существуют гены, которые дают сходные признаки. Таким образом, можно предсказать наличие признаков у других видов известного рода.
  5. Установил, что наибольшее разнообразие форм вида сосредоточено в тех районах, где этот вид возник. Н. И. Вавилов выделил 8 центров происхождения культурных растений .

Центры происхождения культурных растений

Центры происхождения культурных растений - географические области, являющиеся родиной дикорастущих предков культурных растений.

Центры происхождения важнейших культурных растений связаны с древними очагами цивилизации и местом первичного возделывания и селекции растений. Подобные очаги одомашнивания (центры доместикации) выявлены и у домашних животных.

Было выделено восемь центров происхождения культурных растений (рис. 6):

1. Средиземноморский (спаржа, маслины, капуста, лук, клевер, мак, свекла, морковь).

2. Переднеазитский (инжир, миндаль, виноград, гранат, люцерна, рожь, дыня, роза).

3. Среднеазиатский (нут, абрикос, горох, груша, чечевица, лен, чеснок, мягкая пшеница).

4. Индо-Малайский (цитрусовые, хлебное дерево, огурец, манго, черный перец, кокосовая пальма, банан, баклажан).

5. Китайский (просо, редька, вишня, яблоко, гречиха, слива, соя, хурма).

6. Центральноамериканский (тыква, фасоль, какао, авокадо, махорка, кукуруза, батат, хлопчатник).

7. Южноамериканский (табак, ананас, томат, картофель).

8. Абиссинский центр (банан, кофе, сорго, твердая пшеница).

В поздних работах Н. И. Вавилова Переднеазиатский и Среднеазиатский центры объединяются в Юго-западноазиатский центр.

Рис. 6. Центры происхождения культурных растений

В настоящее время выделяют 12 первичных центров происхождения культурных растений.