Количественный анализ лекарственных средств. Методы, используемые для количественного определения лекарственных веществ по фармакологически активной части молекулы

В настоящее время для количественного определения лекарственных веществ в нормативной документации (ГФ ЧЙЙ) достаточно широко применяются классические (титриметрические) методы анализа, но в этом случае определение ведется не по фармакологически активной части молекулы.

Нитрометрия - метод титриметрического анализа, при котором в качестве реактива для титрования используется раствор натрия нитрита.

Применяется для количественного определения соединений, содержащих первичную или вторичную ароматическую аминогруппу, для определения гидразинов, а также ароматических нитросоединений после предварительного восстановления нитрогруппы до аминогруппы. Точную навеску образца лекарственного средства, указанную в частной фармакопейной статье, растворяют в смеси 10 мл воды и 10 мл хлористоводородной кислоты, разведенной 8,3%. Прибавляют воду до общего объема 80 мл, 1 г калия бромида и при постоянном перемешивании титруют 0,1 М раствором натрия нитрита. В начале титрования прибавляют раствор натрия нитрита со скоростью 2 мл/мин., а в конце (за 0,5 мл до эквивалентного количества) - 0,05 мл/мин.

Титрование проводят при температуре раствора 15-20°C, однако в некоторых случаях требуется охлаждение до 0-5°C.

Точку эквивалентности определяют электрометрическими методами (потенциометрическое титрование, амперометрическое титрование) или с помощью внутренних индикаторов.

При потенциометрическом титровании в качестве индикаторного применяют платиновый электрод, при этом в качестве электродов сравнения используют хлорсеребряный или насыщенный каломельный электрод.

На электроды накладывают разность потенциалов 0,3-0,4 В, если не указано иначе в частной фармакопейной статье.

В качестве внутренних индикаторов используют тропеолин 00 (4 капли раствора), тропеолин 00 в смеси с метиленовым синим (4 капли раствора тропеолина 00 и 2 капли раствора метиленового синего), нейтральный красный (2 капли в начале и 2 капли в конце титрования).

Титрование с тропеолином 00 проводят до перехода окраски от красной к желтой, со смесью тропеолина 00 с метиленовым синим - от красно-фиолетовой к голубой, с нейтральным красным - от красно-фиолетовой к синей. Выдержку в конце титрования с нейтральным красным увеличивают до 2 мин. Параллельно проводят контрольный опыт.

С помощью нитрометрии определяют: левомицетин , новокаина гидрохлорид , парацетамол , сульфадиметоксин . Определение ведется по ароматической аминогруппе.

Методом неводного титрования определяют арбидол , артикаина гидрохлорид , атенолол , ацикловир , диазолин , димедрол , дроперидол , дротаверина гидрохлорид , изониазид , кетамина гидрохлорид , клотримазол , клофелина гидрохлорид , кодеин , кодеина фосфат , кофеин , кофеин безводный , метронидазол , натрия диклофенак , никотинамид , нитразепам , папаверина гидрохлорид , пиридоксина гидрохлорид , пироксикам , фенпивериния бромид , хлоропирамина гидрохлорид , верапамила гидрохлорид , галоперидол , гликлазид , диазепам , итраконазол , клемастина фумарат , мелоксикам , мельдоний , метформина гидрохлорид , натрия кромогликат , тиамина хлорид , тинидазол , тиоридазин , тиоридазина гидрохлорид , феназепам . С помощью данного метода проводят количественное определение более чем половины лекарственных веществ, включенных в ГФ ЧЙЙ . Недостатком этого метода является то, что продукты разложения ЛВ, которые обладают основными свойствами, так же могут титроваться хлорной кислотой наряду с неразложившимися ЛВ.

Количественное определение анальгина по ГФ ЧЙЙ проводят йодометрическим методом. Около 0,15 г (точная навеска) субстанции помещают в сухую колбу, прибавляют 20 мл спирта 96%, 5 мл 0,01 М раствора хлористоводородной кислоты и тотчас титруют 0,1 М раствором йода при перемешивании до появления желтой окраски, не исчезающей в течение 30 с. . В основе методики - окисление серы плюс 4 до серы плюс 6. Недостатком метода является то, что определение проводится не по фармакологически активной части молекулы (1-фенил-2,3-диметил-4-метиламино пиразолон-5).

Методом алкалиметрии определяют кислоту ацетилсалициловую , кислоту глутаминовую , доксазозина мезилат , метилурацил , напроксен , кислоту никотиновую , питофенона гидрохлорид , теофиллин , фуросемид - точка эквивалентности устанавливается при помощи индикатора. Бромгексина гидрохлорид , лидокаина гидрохлорид , лизиноприл , ранитидина гидрохлорид - с потенциометрическим окончанием. Стандартизация этих веществ проводится в основном по НСl, которая не является фармакологически активным веществом.

Метод ВЭЖХ ГФ ЧЙЙ рекомендует использовать для определения гвайфенезина , карбамазепина , кеторолака , рибоксина , симвастатина , ондансетрона гидрохлорида . Определение проводят по фармакологически активной части молекулы лекарственного вещества.

Спектрофотометрическим методом определяют гидрокортизона ацетат , спиронолактон , фуразолидон . Метод недостаточно селективен, так как продукты разложения и исследуемое вещество могут иметь одни и те же максимумы светопоглощения.

На современном этапе развития фармацевтической химии физико-химические методы анализа имеют ряд преимуществ перед классическими, так как основаны на использовании, как физических, так и химических свойств лекарственных веществ и в большинстве случаев отличаются экспрессностью, избирательностью, высокой чувствительностью, возможностью унификации и автоматизации .

Метод ГЖХ универсален, высокочувствителен, надежен. Данный метод для качественного и количественного определения мази димексида 50% использовали М.В. Гаврилин, Е.В. Компанцева и другие .

А.Г. Витенбергом в ходе изучения хлорированной водопроводной воды выяснено, что содержание примесей летучих галогенпроизводных углеводородов не остается постоянным, возрастает в процессе нахождения воды в водопроводной системе. Это говорит о незавершенности химических превращений гуминового вещества после хлорирования воды. Существующие аттестованные методики, основанные на парофазном газохроматографическом анализе, не учитывают данную особенность, предусматривают определение только свободных галогенпроизводных углеводородов. Была проведена сравнительная оценка официальных методик, выявлены источники погрешностей, превышающие допустимые значения. Предложены пути оптимизации всех стадий анализа для создания методик, обеспечивающих минимум погрешности и достоверную информацию о содержании летучих галогенпроизводных углеводородов в водопроводных и сточных водах .

Газовая хроматография была применена для определения в моче амфетаминов, барбитуратов, бензодиазепинов, опиатов методом высокотемпературной твердофазной микроэкстракции лекарственных веществ .

Ионную хроматографию использовал Siang De-Wen для определения анионитов в питьевой воде. Метод оказался простым, быстрым и точным (все анионы детектируются одновременно со среднеквадратичным отклонением?3%, регенерация 99,7% и 102%). Анализ длился 15 минут .

Ряд авторов рассчитали: разности газохроматографических индексов удерживания продуктов хлорирования алифатических кетонов и исходных карбонильных соединений постоянны. Численные значения их зависят от числа и положения атомов хлора в молекуле. Разработали вариант аддитивных схем оценки индексов удерживания для идентификации хлорпроизводных карбонильных соединений. И.Г. Зенкевич установил порядок хроматографического элюирования диастомерных б-б"-дихлор-К-алканов (К?2) .

И.В. Груздьев и соавторы изучали 2- и 4-хлоранилин, 2,4- и 2,6-дихлоранилин, 2,4,5- и 2,4,6-трихлоранилин и незамещенный анилин, разработали методики определения их микро количеств в питьевой воде, включающие получение бромопроизводных, жидкостную экстракцию толуолом, а так же для определения дифенгидрамина гидрохлорида и его основания в присутствии продуктов разложения .

В.Г. Амелин и другие применили метод газовой хроматографии с времяпролетным масс-спектрометрическим детектором для идентификации и определения пестицидов и полициклических ароматических углеводородов (46 ингредиентов) в воде и пищевых продуктах.

Потапова Т.В., Щеглова Н.В. при изучении равновесных реакций образования циклогексадиаминтетраацетатных, этилендиаминтетраацетатных, диэтилентриаминпентаацетатных комплексов некоторых металлов применили метод ионообменной хроматографии .

Посредством аналитических систем (жидкостная хроматография, масс-спектрометрия) Sony Weihua и ряд авторов установили, что в процессах с участием ОН-радикалов активных электролитов фармацевтические препараты деструктировались почти полностью.

Витальев А.А. и другие изучили условия изолирования кеторолака и диклофенака из биологических жидкостей. Предложили метод экстракции органическими растворителями при разных рН. Применили метод ТСХ для идентификации анализируемых веществ.

Использование планарной хроматографии на примере аминокислот и амлодипина продемонстрировали Pakhomov V.P., Checha O.A. для изучения и разделения оптически-активных лекарственных веществ на индивидуальные стереоизомеры с последующей идентификацией.

Методом капиллярной газовой хроматографии в сочетании с масс-спектрофотомерией показано, что экстракция из крови стероидов была наиболее полноценной (~100%).

С помощью рециркуляционной ВЭЖХ учеными было выделено восемь нецитотоксичных бактериальных модификаций лекарственной устойчивости .

Н.Н. Дементьева, Т.А. Завражская использовали газохроматографические методы анализа различных лекарственных средств в растворах для инъекций и глазных каплях .

С помощью жидкостной хроматографии определяли гиперацин и псевдогиперацин в фармацевтических препаратах с флуоресцентным детектированием . Этим же методом идентифицирована вальпроевая кислота в сыворотке крови человека, предел чувствительности 700 ммоль/л . Метод ВЭЖХ применили для определения динатрия кромогликата в фармацевтических средствах. С помощью данного метода удавалось открывать 98,2-100,8% добавленного к пробе анализируемого вещества.

М.Е. Евгеньев с сотрудниками установили влияние природы и полярности элюента, содержания водной фазы в водно-неводной смеси и ее рН на подвижность 5,7-динитробензофуразиновых производных ряда ароматических аминов в условиях УФ-ВЭЖХ. В колонке ZORBAX SB-C18 разработана методика разделения смеси шести ароматических аминов.

При разработке методов оценки качества новокаина, циклометазидина, сиднокарба А.С. Квач и соавторы применили методы ВЭЖХ и микроколоночной адсорбционной хроматографии в сочетании с фотометрическим методом анализа, позволяющим проводить количественное определение новокаина в субстанции и жидких лекарственных формах по фармакологически-активной части молекулы .

И.А. Колычев, З.А. Темердашев, Н.А. Фролова разработали метод ВЭЖХ определения двенадцати фенольных соединений в растительных материалах методом обращено-фазовой ВЭЖХ с УФ-детектированием и элюентным режимом элюирования. Изучили влияние различных факторов разделения галловой, транс-феруловой, протокатехиновой, транс-кофейной кислот, кверцетина, рутина, дигидрокверцетина и эпикатехина .

Н.А. Эпштейн использовал метод ВЭЖХ для одновременного определения лекарственных веществ в суспензиях. Ряд авторов применили данный метод для определения в плазме людей одновременного содержания пароксетина, рисперидона и 9-гидроксирепиредона (с кулонометрическим детектированием. С помощью ВЭЖХ с УФ-детектором в режиме перезагрузки колонки описан метод определения клотримазола и мометазона фурата в широком диапазоне концентраций.

А.М. Мартынов, Е.В. Чупарина разработали недеструктивную методику рентген флуоресцентного анализа ионов в растениях на спектрометре. Установили, что снижение массы растения с 6 до 1 грамма увеличивает чувствительность определения элементов. С помощью данной методики установили элементный состав фиалок, используемых в медицине.

А.С. Саушкина, В.А. Беликов произвели спектрофотомерию для идентификации левомицетина в лекарственных формах. С помощью метода УФ-спектрофотомерии предложена методика количественного определения парацетамола и мефенамовой кислоты в таблетках. Установлены оптимальные условия спектрофотометрического анализа метазида, фтивазида, изониазида, левомицетина и синтомицина на основе исследования УФ-спектров. При спектрофотометрическом определении кеторолака относительная ошибка составляет ±1,67% .

В.И. Вершинин с соавторами выявили отклонения от аддитивности светопоглощающих смесей и спрогнозировали с помощью статистических моделей, полученных в ходе полного факторного эксперимента. Модели связывают отклонения и состав смесей, что позволяет оптимизировать методики спектрофотометрического анализа.

Ж.А. Кормош в соавторстве определили пироксикам на основе экстракции его ионного ассоциата с полиметиновым красителем методом СФМ. Максимальное извлечение толуолом достигается при рН=8,0-12,0 водной фазы. Для контроля качества лекарственных препаратов, содержащих пироксикам, разработана методика экстракционно-спектрофотометрического определения.

Перспективным методом исследования лекарственного вещества является экстракционная фотометрия . Этот метод характеризуется высокой чувствительностью за счет образования продуктов взаимодействия с реагентами, приводящими к появлению дополнительных хромофоров, увеличению сопряжения, а так же за счет концентрирования продуктов реакции в органической фазе. Достаточная точность, сравнительная простота выполнения и возможность определения действующего вещества по фармакологически-активной части молекулы является еще одним достоинством экстракционной фотометрии.

Е.Ю. Жарская, Д.Ф. Нохрин, Т.П. Чурина применили экстракционную фотометрию для определения верапамила гидрохлорида, мезапама по фармакологически-активной части молекулы на основе реакции с салицилатным комплексом меди (ЙЙ) .

Н.Т. Бубон с соавторами в качестве реагента на лекарственные вещества применили бромкрезоловый пурпуровый. На основе данной реакции были разработаны экстракционно-фотометрические методы определения фторацизина и ацефена в таблетках.

Г.И. Лукьянчикова и коллеги использовали экстракционную фотометрию в анализе ацеклидина, оксилидина по фармакологически активной части молекулы на основе реакции с бромтимоловым синим. Ряд авторов применили экстракционно-фотометрический метод для количественного определения метамизила в 0,25% инъекционном растворе.

Изучая влияние рН среды и температуры на устойчивость водных растворов спазмолитина, Г.И. Олешко разработал экстракционно-фотометрический метод его анализа по фармакологически активной части молекулы на основе реакции комплексообразования с бромталлиевой кислотой.

А.А. Литвин с соавторами разработал экстракционно-фотометрический метод анализа новокаина в инъекционных растворах, мазях и изучил возможность использования его при исследовании лекарственных препаратов, содержащих новокаин, в процессе хранения .

Т.А. Смолянюк предложила методику экстракционно-фотометрического определения дифенгидрамина гидрохлорида с помощью тропеолина 000-1, которая позволяет анализировать его в присутствии примесей .

В практической фармации широко используется фотометрия и турбидиметрия . Л.В. Каджонян, И.А. Кондратенко количественно определили фотометрическим методом по фармакологически активной части молекулы дифенгидрамина гидрохлорид и тримекаин . В.А. Попков и другие применили дифференциальную сканирующую колориметрию в фарманализе для кислоты никотиновой, изониазида, фтивазида. А.И. Сичко использовал фототурбидиметрию для количественного определения тетурама . Недостатком фотометрических методов является то, что они не всегда позволяют определить действующее вещество в присутствии продуктов деструкции.

Для количественного определения лекарственных веществ также был применен флуориметрический метод . В.М. Иванов, О.А. Григорьев, А.А. Хабаров использовали флуоресцентный анализ в контроле качества лекарственных средств, содержащих фурокумарины группы псоралена и фолиевую кислоту. Широко также применяется колоночная хроматография . Д.Э. Бодрина, С.К. Еремин, Б.Н. Изотов применили микроколонку на жидкостном хроматографе «Мелихром» для определения бензодиазепинов в биологических объектах.

В последнее время широкое распространение получил хромато-спектрофотометрический метод для количественного определения вещества по фармакологически активной части молекулы. Он сочетает в себе высокую чувствительность ультрафиолетовой спектроскопии и разделительную способность тонкослойной хроматографии. С.А. Валевко, М.В. Мишустина разработали методику хромато-спектрофотометрического определения папаверина гидрохлорида, а Д.С. Лазарян и Е.В. Компанцева применили его для определения хлорпропамида в присутствии продуктов их распада.

Спектрофотометрический метод не всегда позволяет объективно контролировать количественное содержание активного компонента. Это связано с тем, что продукты распада иногда имеют максимум поглощения в той же области спектра, что и лекарственные препараты.

Большие возможности в анализе лекарственного вещества и его конформаций открывают масс-спектрометрия , атомноабсорбционная спектрофотометрия, ЯМР-, ИК-, ПМР- спектроскопия . Для идентификации дифенгидрамина гидрохлорида был использован хромато-масс-спектрометрический метод . Установлено, что в лекарственном веществе присутствуют четыре примеси: бензофенон, 9-метиленфлуорен, 9-флуоренилдиметил-аминоэтиловый эфир и дифенилметиловый эфир. Содержание дифенгидрамина составило 96,80%.

Описан метод определения атропина в экстрактах красавки с помощью масс-спектрометрии с химической ионизацией при атмосферном давлении. В качестве внутреннего стандарта использовали тербутамин . Л.В. Адеишвили с соавторами исследовали спектры дифенгидрамина гидрохлорида и мебедрола, и предложили их использовать для идентификации препаратов .

В.С. Карташов для идентификации лекарственных средств, производных хинолина и изохинолина, применили метод ЯМР. Характерные сигналы в спектрах ЯМР лекарственных средств позволяют осуществлять их надежную идентификацию с помощью персонального компьютера.

ПМР-спектроскопию с высокой напряженностью магнитного поля использовали для количественного определения пропранолола.

Т.С. Чмиленко, Е.А. Галимбиевская, Ф.А. Чмиленко показали, что при взаимодействии фенолового красного с хлоридом полигексаметиленгуанидиния образуется ионный ассоциат и несколько форм агрегатов, состав которых установлен спектрофотометрическим, турбидиметрическим, рефрактометрическим и кондуктометрическим методами . Происходит перераспределение полос поглощения, наблюдаются экстремальные точки, которые соответствуют областям максимального накопления образующихся агрегатов. Разработана методика определения ПГМГ в дезинфицирующем средстве «Биопаг-Д» с использованием экстремальных точек.

5 / 5 ( голосов: 1 )

Сегодня довольно часто можно обнаружить некачественные лекарства и таблетки-пустышки, которые вызывают у потребителя сомнения по поводу их эффективности. Существуют определенные методы анализа лекарственных средств, позволяющие с максимальной точностью определить состав лекарства, его характеристики, а это позволит выявить степень влияния лекарственного средства на организм человека. Если у вас есть определенные жалобы на лекарственный препарат, тогда его химическая экспертиза и объективное заключение могут быть доказательством в любом судебном разбирательстве.

Какие методы анализа лекарственных средств используют в лабораториях?

Для установления качественных и количественных характеристик лекарства в специализированных лабораториях широко применяют такие методы:

  • Физические и физико-химические, которые помогают определить температуру плавления и затвердевания, плотность, состав и чистоту примесей, найти содержание тяжелых металлов.
  • Химические, определяющие наличие летучих веществ, воды, азота, растворимость лекарственного вещества, его кислотное, йодное число и т. д.
  • Биологические, позволяющие испытать вещество на стерильность, микробную чистоту, содержание токсинов.

Методы анализа лекарственных средств позволят установить подлинность заявленного производителем состава и определят малейшие отклонения от норм и технологии производства. В лаборатории АНО «Центр химических экспертиз» есть все необходимое оборудование для точного исследования любого вида лекарства. Высококвалифицированные специалисты применяют разнообразные методы анализа лекарственных средств и в кратчайшие сроки предоставят объективное заключение экспертизы.

В современном фармацевтическом анализе стали широко применяться неводные растворители. Если раньше основным растворителем в анализе была вода, то теперь одновременно применяют и разнообразные неводные растворители (ледяную или безводную уксусную кислоту, уксусный ангидрид, диметил-формамид, диоксан и др.), позволяющие изменять силу основ-ности и кислотности анализируемых веществ. Получил разви-тие микрометод, в частности капельный метод анализа, удобный для использования во внутриаптечном контроле качества ле-карств.

Широкое развитие в последние годы получают такие методы исследования, при которых используют сочетание различных ме-тодов при анализе лекарственных веществ. Например, хромато-масс-спектрометрия - это сочетание хроматографии и масс-спектрометрии. В современный фармацевтический анализ все больше проникает физика, квантовая химия, математика.

Анализ любого лекарственного вещества или сырья необхо-димо начинать с внешнего осмотра, обращая при этом внима-ние на цвет, запах, форму кристаллов, тару, упаковку, цвет стекла. После внешнего осмотра объекта анализа берут сред-нюю пробу для анализа согласно требованиям ГФ X (с. 853).

Методы исследования лекарственных веществ подразделя-ются на физические, химические, физико-химические, биологи-ческие.

Физические методы анализа предусматривают изучение фи-зических свойств вещества, не прибегая к химическим реакци-ям. К ним относятся: определение растворимости, прозрачности

  • или степени мутности, цветности; определение плотности (для жидких веществ), влажности, температуры плавления, затвер-девания, кипения. Соответствующие методики описаны в ГФ X .(с. 756-776).

Химические методы исследования основаны на химических реакциях. К ним относятся: определение зольности, реакции среды (рН), характерных числовых показателей масел и жиров (кислотное число, йодное число, число омыления и т. д.).

Для целей идентификации лекарственных веществ исполь-зуют только такие реакции, которые сопровождаются нагляд-ным внешним эффектом, например изменением окраски раство-ра, выделением газов, выпадением или растворением осадков и т. п.

К химическим методам исследования относятся также весо-вые и объемные методы количественного анализа, принятые в аналитической химии (метод нейтрализации, осаждения, редокс-методы и др.). В последние годы в фармацевтический ана-лиз вошли такие химические методы исследования, как титро-вание в неводных средах, комплексометрия.

Качественный и количественный анализ органических лекар-ственных веществ, как правило, проводят по характеру функ-циональных групп в их молекулах.

С помощью физико-химических методов изучают физические явления, которые происходят в результате химических реакций. Например, в колориметрическом методе измеряют интенсив-ность окраски в зависимости от концентрации вещества, в кон-дуктометрическом анализе - измерение электропроводности растворов и т. д.

К физико-химическим методам относятся: оптические (реф-рактометрия, поляриметрия, эмиссионный и флюоресцентный методы анализа, фотометрия, включающая фотоколориметрию и спектрофотометрию, нефелометрия, турбодиметрия), электро-химические (потенциометрический и полярографический мето-ды), хроматографические методы.

В соответствии с ГФ XI методы исследования лекарственных средств подразделяются на физические, физико-химические и химические.

Физические методы. Включают методы определение температуры плавления, затвердевания, плотности (для жидких веществ), показателя преломления (рефрактометрия), оптического вращения (поляриметрия) и др.

Физико-химические методы. Их можно разделить на 3 основным группы: электрохимические (полярография, потенциометрия), хромато- графические и спектральным (УФ- и ИК-спектрофотометрия и фотоколориметрия).

Полярография - метод изучения электрохимических процессов, основанный на установлении зависимости силы тока от напряжения, которое прикладывается к исследуемой системе. Электролиз исследуемых раство- ров проводится в электролизере, одним из электродов которой служит капельный ртутный электрод, а вспомогательным - ртутныш электрод с большой поверхностью, потенциал которого практически не изменяется при прохождении тока небольшой плотности. Полученная полярографическая кривая (полярограмма) имеет вид волны. Вымота волны связана с концентрацией реагирующих веществ. Метод применяется для количественного определения многих органических соединений.

Потенциометрия - метод определения рН и потенциометрическое титрование.

Хроматография - процесс разделения смесей веществ, происходящий при их перемещении в потоке подвижной фазы вдоль неподвижного сорбента. Разделение происходит благодаря различию тех или иныгх физико -химических свойств разделяемые веществ, приводящему к неодинаковому взаимодействию их с веществом неподвижной фазы, следовательно, к различию во времени удерживания слоя сорбента.

По механизму, лежащему в основе разделения, различают адсорбционную, распределительную и ионообменную хроматографию. По способу разделения и применяемой аппаратуре различают хроматографию на колонках, на бумаге в тонком слое сорбента, газовую и жидкостную хроматографию, высокоэффективную жидкостную хроматографию (ВЭЖХ) и др.

Спектральным методы основаны на избирательном поглощении электромагнитного излучения анализируемым веществом. Различают спектрофотометрические методы, основанным на поглощении веществом монохроматического излучения УФ- и ИК-диапазонов, колориметрические и фотоколориметрические методы, основанным на поглощении веществом немонохроматического излучения видимой части спектра.

Химические методы. Основаны на использовании химических реакций для идентификации лекарственные средств. Для неорганических лекарственных средств используют реакции на катионы и анионы, для органических - на функциональным группы, при этом применяются только такие реакции, которым сопровождаются наглядным внешним эффектом: изменением окраски раствора, выделением газов, выпадением осадков и т.д.

С помощью химических методов проводят определение численных показателей масел и эфиров (кислотное число, йодное число, число омыления), характеризующих их доброкачественность.

К химическим методам количественного анализа лекарственных веществ относятся гравиметрический (весовой) метод, титриметрические (объёмным) методы, включающие кислотно - основное титрование в водных и неводных средах, газометрический анализ и количественный элементный анализ.

Гравиметрический метод. Из неорганических лекарственных веществ этим методом можно определять сульфаты, переводя их в нераство- римым соли бария, и силикаты, предварительно прокаливая их до диоксида кремния. Возможно применение гравиметрии для анализа препаратов со - лей хинина, алкалоидов, некоторые витаминов и др.

Титриметрические методы. Это наиболее распространенным в фар - мацевтическом анализе методы, отличающиеся небольшой трудоемкостью и достаточно вымокой точностью. Титриметрические методы можно подразделить на осадительное титрование, кислотно - основное, окислительно - восстановительное, комплексиметрию и нитритометрию. С их помощью количественную оценку производят, проводя определение отдельные элементов или функциональных групп, содержащихся в молекуле лекарственного вещества.

Осадительное титрование (аргентометрия, меркуриметрия, меркуро- метрия и др.).

Кислотно - основное титрование (титрование в водной среде, ацидиметрия - использование в качестве титранта кислоты, алкалиметрия - использование для титрования щелочи, титрование в смешанные растворителях, неводное титрование и др.).

Окислительно-восстановительное титрование (иодометрия, иодхлорометрия, броматометрия, перманганатометрия и др.).

Комплексиметрия. Метод основан на образовании прочных, растворимых в воде комплексов катионов металлов с трилоном Б или др. комплексонами. Взаимодействие происходит в стехиометрическом соотношении 1:1 независимо от заряда катиона.

Нитритометрия. Метод основан на реакциях первичных и вторичных ароматических аминов с нитритом натрия, которые используют в качестве титранта. Первичные ароматические амины образуют с нитритом натрия в кислой среде диазосоединение, а вторичным ароматические амины в этих условиях образуют нитрозосоединения

Газометрический анализ. Имеет ограниченное применение в фармацевтическом анализе. Объектами этого анализа являются два газообразныгх препарата: кислород и циклопропан. Сущность газометрического определения заключается во взаимодействии газов с поглотительными растворами.

Количественный элементный анализ. Этот анализ используют для количественного определения органических и элементорганических со - единений, содержащих азот, галогены, серу, а также мы1шьяк, висмут, ртуть, сурьму и др. элементы.

Биологические методы контроля качества лекарственных веществ. Биологическую оценку качества ЛB проводят по их фармакологической активности или токсичности. Биологические микробиологические методы применяют в тех случаях, когда с помощью физических, химических и физико-химических методов нельзя сделать заключение о доброкачественности ЛC. Биологические испытания проводят на животных кошки, собаки, голуби, кролики, лягушки и др.), отдельных изолированных органах (рог матки, часть кожи) и группах клеток (форменные элементы крови, штаммы микроорганизмов и др.). Биологическую активность устанавливают, как правило, путем сравнения действия испытуемых и стандартных образцов.

Испытаниям на микробиологическую чистоту подвергают не стерилизуемые в процессе производства ЛП (таблетки, капсулы, гранулы, растворы, экстракты, мази и др.). Эти испытания имеют своей целью определение состава и количества имеющейся в ЛФ микрофлоры. При этом устанавливается соответствие нормам, ограничивающим микробную обсемененность (контаминацию). Испытание включает количественное определение жизнеспособных бактерий и грибов, выявление некоторых видов микроорганизмов, кишечной флоры и стафилококков. Испытание выполняют в асептических условиях в соответствии с требованиями ГФ XI (в. 2, с. 193) двухслойным агаровым методом в чашках Петри.

Испытание на стерильность основано на доказательстве отсутствия в ЛС жизнеспособных микроорганизмов любого вида и является одним из важнейших показателей безопасности ЛС. Этим испытаниям подвергаются все ЛП для парентерального введения, глазные капли, мази и т.д. Для контроля стерильности применяют биогликолевую и жидкую среду Сабуро, используя метод прямого посева на питательные среды. Если ЛС обладает выраженным антимикробным действием или разлито в емкости более 100 мл, то используют метод мембранной фильтрации (ГФ, в. 2, с. 187).

Биологическую оценку качества лекарственных препаратов обычно проводят по силе фармакологического эффекта или по токсичности. Применяют биологические методы, когда с помощью физических, химических или физико-химических методов не удается сделать заключение о чистоте или токсичности лекарственного препарата или когда способ получения препарата не гарантирует постоянства активности (например, антибиотики).

Проводят биологические испытания на животных (кошки, собаки, кролики, лягушки и др.), отдельных изолированных органах (рог матки, часть кожи), отдельных группах клеток (форменные элементы крови), а также на определенных штаммах микроорганизмов. Активность препаратов выражают в единицах действия (ЕД).

Биологический контроль лекарств, содержащих сердечные гликози- ды. По ГФ XI проводят биологическую оценку активности лекарственного растительного сырья и полученных из него препаратов, содержащих сердечные гликозиды, в частности наперстянки (пурпурной, крупноцветковой и шерстистой), горицвета, ландыша, строфанта, желтушника серого. Испытания проводят на лягушках, кошках и голубях, устанавливая соответственно лягушачьи (ЛЕД), кошачьи (КЕД) и голубиные (ГЕД) единицы действия. Одна ЛЕД соответствует дозе стандартного образца, вызывающего в условиях опыта систолическую остановку сердца у большинства подопытных стандартных лягушек (самцы массой 28--33 г). Одна КЕД или ГЕД соответствует дозе стандартного образца или испытуемого препарата из расчета на 1 кг массы животного или птицы, вызывающего систолическую остановку сердца кошки или голубя. Содержание ЕД рассчитывают в 1,0 г исследуемого лекарственного средства, если испытывают растительное сырье или сухие концентраты; в одной таблетке или в 1 мл, если испытывают жидкие лекарственные формы.

Испытание на токсичность. В этот раздел ГФ XI, вып. 2 (с. 182) по сравнению с ГФ X внесен ряд дополнений и изменений, отражающих возрастающие требования к качеству лекарственных средств и необходимость унификации условий их испытаний. В статью введен раздел, в котором описан порядок отбора проб. Увеличена масса животных, на которых проводят испытание, указаны условия их содержания и срок наблюдения за ними. Для выполнения испытания отбирают по два флакона или ампулы от каждой серии, содержащей не более 10000 флаконов или ампул. Из партий с большим количеством отбирают по три ампулы (флакона) от каждой серии. Содержимое проб одной серии смешивают и испытывают на здоровых белых мышах обоего пола массой 19--21 г. Испытуемый раствор вводят в хвостовую вену пяти мышей и ведут наблюдение за животными 48 ч. Препарат считается выдержавшим испытание, если ни одна из подопытных мышей не погибнет в течение указанного срока. В случае гибели даже одной мыши испытание повторяют по определенной схеме. В частных статьях может быть указан и другой порядок проведения испытания на токсичность.

Испытания на пирогенность. Бактериальные пирогены представляют собой вещества микробного происхождения, способные вызвать у человека и теплокровных животных при попадании в кровяное русло повышение температуры тела, лейкопению, падение кровяного давления и другие изменения в различных органах и системах организма. Пирогенную реакцию вызывают грамотрицательные живые и мертвые микроорганизмы, а также продукты их распада. Допустимо содержание, например, в изотоническом растворе натрия хлорида 10 микроорганизмов в 1 мл, а при введении не более 100 мл допускается 100 на 1 мл. Испытанию на пирогенность подвергают воду для инъекций, инъекционные растворы, иммунобиологические лекарственные средства, растворители, используемые для приготовления инъекционных растворов, а также лекарственные формы, вызывающие, по сведениям клиник, пирогенную реакцию.

В ГФ XI, как и в фармакопеи других стран мира, включен биологический метод испытания пирогенности, основанный на измерении температуры тела кроликов после введения в ушную вену испытуемых стерильных жидкостей. Отбор проб проводится так же, как при испытании на токсичность. В общей статье (ГФ XI, вып. 2, с. 183--185) указаны требования к подопытным животным и порядок их подготовки к проведению испытаний. Испытуемый раствор проверяют на трех кроликах (не альбиносах), масса тела которых отличается не более чем на 0,5 кг. Температуру тела измеряют, вводя термометр в прямую кишку на глубину 5--7 см. Испытуемые жидкости считают непирогенными, если сумма повышенной температуры у трех кроликов равна или меньше 1,4°С. Если эта сумма превышает 2,2°С, то воду для инъекций или инъекционный раствор считают пирогенными. Если сумма повышения температуры у трех кроликов находится в пределах от 1,5 до 2,2° С, испытание повторяют дополнительно на пяти кроликах. Испытуемые жидкости считают непирогенными, если сумма повышений температуры у всех восьми кроликов не превышает 3,7°С. В частных ФС могут быть указаны другие пределы отклонений температуры. Кроликов, бывших в опыте, можно использовать для этой цели повторно не ранее чем через 3 сут., если введенный им раствор был непирогенным. Если же введенный раствор оказался пирогенным, то кроликов повторно можно использовать только через 2--3 недели. В ГФ XI по сравнению с ГФ X введена проверка на реактивность кроликов, впервые используемых для испытаний, и уточнен раздел о возможности их использования для повторных испытаний.

Рекомендуемый ГФ XI биологический метод отличается специфичностью, но не дает количественной оценки содержания пирогенных веществ. К существенным его недостаткам следует отнести трудоемкость и продолжительность испытаний, необходимость содержания животных, ухода за ними, сложность подготовки к проведению испытаний, зависимость результатов от индивидуальных особенностей каждого животного и т.д. Поэтому предпринимались попытки разработки других методов определения пирогенности.

Наряду с определением пирогенности на кроликах за рубежом используют микробиологический метод, основанный на подсчете общего числа микроорганизмов в исследуемой лекарственной форме до ее стерилизации. В нашей стране предложена простая и доступная методика обнаружения пирогенов, основанная На избирательной идентификации грамотрицательных микроорганизмов по реакции образования геля с применением 3%-ного раствора гидроксида калия. Методика может быть использована на химико-фармацевтических предприятиях.

Предпринята попытка заменить биологический метод определения пирогенности химическим. Растворы, содержащие пирогены, после обработки хиноном показывали отрицательную реакцию с тетрабромфенолфталеином. Пирогенал с триптофаном в присутствии серной кислоты образует буро-малиновое окрашивание при содержании пирогенала 1 мкг и более.

Исследовалась возможность спектрофотометрического определения пирогенных веществ в УФ-области спектра. Растворы фильтрата пирогенсодержащих культур микроорганизмов обнаруживают слабовыраженный максимум поглощения при 260 нм. По чувствительности спектрофотометрический метод определения пирогенов в 7-8 раз уступает биологическому испытанию на кроликах. Однако если перед спектрофотометрированием провести ультрафильтрование, то вследствие концентрирования пирогенов можно достигнуть сопоставимых результатов определения биологическим и спектрофотометрическим методами.

После обработки хиноном растворы пирогенов приобретают красную окраску и появляется максимум светопоглощения при 390 нм. Это позволило разработать фотоколориметрический способ определения пирогенов.

Высокая чувствительность люминесцентного метода создала предпосылки использования его для определения пирогенных веществ в концентрации до 1*10 -11 г/мл. Разработаны методики люминесцентного обнаружения пирогенов в воде для инъекций и в некоторых инъекционных растворах с применением красителей родамина 6Ж и 1-анилино-нафталин-8-сульфоната. Методики основаны на способности пирогенов увеличивать интенсивность люминесценции указанных красителей. Они позволяют получать результаты, сопоставимые с биологическим методом.

Относительная ошибка спектрофотометрического и люминесцентного определения не превышает ±3%. Для определения пирогенности воды для инъекций используют также хемилюминесцентный метод.

Перспективным методом является полярография. Установлено, что фильтраты пирогенных культур даже в очень разбавленном состоянии оказывают сильное подавляющее действие на полярографический максимум кислорода. На этой основе разработан способ полярографической оценки качества воды для инъекций и некоторых инъекционных растворов.

Испытание на содержание веществ гистаминоподобного действия.

Данному испытанию подвергают парентеральные лекарственные средства. Выполняют его на кошках обоего пола массой не менее 2 кг под уретановым наркозом. Вначале животному, находящемуся под наркозом, вводят гистамин, проверяя его чувствительность к этому веществу. Затем с интервалом 5 мин продолжают повторные введения (0,1 мкг/кг) стандартного раствора гистамина до тех пор, пока при двух последовательных введениях не будет получено одинаковое снижение артериального давления, которое принимается за стандартное. После этого с интервалом 5 мин животному вводят испытуемый раствор с той же скоростью, с которой вводили гистамин. Препарат считают выдержавшим испытание, если снижение артериального давления после введения тест-дозы не превышает реакции на введение 0,1 мкг/кг в стандартном растворе.