Удельное электросопротивление. Расчет удельного сопротивления металлов, в частности, меди

Одним из самых востребованных металлов в отраслях промышленности является медь. Наиболее широкое распространение она получила в электрике и электронике. Чаще всего ее применяют при изготовлении обмоток для электродвигателей и трансформаторов. Основная причина использования именно этого материала заключается в том, что медь обладает самым низким из существующих в настоящий момент материалов удельным электрическим сопротивлением. Пока не появится новый материал с более низкой величиной этого показателя, можно с уверенностью говорить о том, что замены у меди не будет.

Общая характеристика меди

Говоря про медь, необходимо сказать, что еще на заре электрической эры она стала использоваться в производстве электротехники. Применять ее стали во многом по причине уникальных свойств, которыми обладает этот сплав. Сам по себе он представляет материал, отличающийся высокими свойствами в плане пластичности и обладающий хорошей ковкостью.

Наряду с теплопроводностью меди, одним из самых главных ее достоинств является высокая электропроводность. Именно благодаря этому свойству медь и получила широкое распространение в энергетических установках , в которых она выступает в качестве универсального проводника. Наиболее ценным материалом является электролитическая медь, обладающая высокой степенью чистоты -99,95%. Благодаря этому материалу появляется возможность для производства кабелей.

Плюсы использования электролитической меди

Применение электролитической меди позволяет добиться следующего:

  • Обеспечить высокую электропроводность;
  • Добиться отличной способности к уложению;
  • Обеспечить высокую степень пластичности.

Сферы применения

Кабельная продукция, изготавливаемая из электролитической меди, получила широкое распространение в различных отраслях. Чаще всего она применяется в следующих сферах:

  • электроиндустрия;
  • электроприборы;
  • автомобилестроение;
  • производство компьютерной техники.

Чему равно удельное сопротивление?

Чтобы понимать, что собой представляет медь и его характеристики, необходимо разобраться с основным параметром этого металла - удельным сопротивлением. Его следует знать и использовать при выполнении расчетов.

Под удельным сопротивлением принято понимать физическую величину, которая характеризуется как способность металла проводить электрический ток.

Знать эту величину необходимо еще и для того, чтобы правильно произвести расчет электрического сопротивления проводника. При расчетах также ориентируются на его геометрические размеры. При проведении расчетов используют следующую формулу:

Это формула многим хорошо знакома. Пользуясь ею, можно легко рассчитать сопротивление медного кабеля, ориентируясь только на характеристики электрической сети. Она позволяет вычислить мощность, которая неэффективно расходуется на нагрев сердечника кабеля. Кроме этого, подобная формула позволяет выполнить расчеты сопротивления любого кабеля. При этом не имеет значения, какой материал использовался для изготовления кабеля - медь, алюминий или какой-то другой сплав.

Такой параметр, как удельное электрическое сопротивление измеряется в Ом*мм2/м. Этот показатель для медной проводки, проложенной в квартире, составляет 0,0175 Ом*мм2/м. Если попробовать поискать альтернативу меди - материал, который можно было бы использовать вместо нее, то единственным подходящим можно считать только серебро , у которого удельное сопротивление составляет 0,016 Ом*мм2/м. Однако необходимо обращать внимание при выборе материала не только на удельное сопротивление, но еще и на обратную проводимость. Эта величина измеряется в Сименсах (См).

Сименс = 1/ Ом.

У меди любого веса этот параметр состав равен 58 100 000 См/м. Что касается серебра, то величина обратной проводимости у нее равна 62 500 000 См/м.

В нашем мире высоких технологий, когда в каждом доме имеется большое количество электротехнических устройств и установок, значение такого материала, как медь просто неоценимо. Этот материал используют для изготовления проводки , без которой не обходится ни одно помещение. Если бы меди не существовало, тогда человеку пришлось использовать провода из других доступных материалов, например, из алюминия. Однако в этом случае пришлось бы столкнуться с одной проблемой. Все дело в том, что у этого материала удельная проводимость гораздо меньше, чем у медных проводников.

Удельное сопротивление

Использование материалов с низкой электро- и теплопроводностью любого веса ведет к большим потерям электроэнергии. А это влияет на потерю мощности у используемого оборудования. Большинство специалистов в качестве основного материала для изготовления проводов с изоляцией называют медь. Она является главным материалом, из которого изготавливаются отдельные элементы оборудования, работающего от электрического тока.

  • Платы, устанавливаемые в компьютерах, оснащаются протравленными медными дорожками.
  • Медь также используется для изготовления самых разных элементов, применяемых в электронных устройствах.
  • В трансформаторах и электродвигателях она представлена обмоткой, которая изготавливается из этого материала.

Можно не сомневаться, что расширение сфер применения этого материала будет происходить с дальнейшим развитием технического прогресса. Хотя, кроме меди, существуют и другие материалы, но все же конструктора при создании оборудования и различных установок используют медь. Главная причина востребованности этого материала заключается в хорошей электрической и теплопроводности этого металла, которую он обеспечивает в условиях комнатной температуры.

Температурный коэффициент сопротивления

Свойством уменьшения проводимости с повышением температуры обладают все металлы с любой теплопроводностью. При понижении температуры проводимость возрастает. Особенно интересным специалисты называют свойство уменьшения сопротивления с понижением температуры. Ведь в этом случае, когда в комнате температура снижается до определенной величины, у проводника может исчезнуть электрическое сопротивление и он перейдет в класс сверхпроводников.

Для того чтобы определить показатель сопротивления конкретного проводника определенного веса в условиях комнатной температуры, существует коэффициент критического сопротивления. Он представляет собой величину, которая показывает изменение сопротивления участка цепи при изменении температуры на один Кельвин. Для выполнения расчета электрического сопротивления медного проводника в определенном временном промежутке используют следующую формулу:

ΔR = α*R*ΔT, где α - температурный коэффициент электрического сопротивления.

Заключение

Медь - материал, который широко применяют в электронике. Его используют не только в обмотке и схемах, но и в качестве металла для изготовления кабельной продукции. Чтобы техника и оборудование работали эффективно, необходимо правильно рассчитать удельное сопротивление проводки , прокладываемой в квартире. Для этого существует определенная формула. Зная её, можно произвести расчет, который позволяет узнать оптимальную величину сечения кабеля. В этом случае можно избежать потери мощности оборудования и обеспечить эффективность его использования.

Про закон Ома многие слышали, но не все знают, что это такое. Изучение начинается со школьного курса физики. Более подробно проходят на физфаке и электродинамике. Рядовому обывателю эти знания маловероятно пригодятся, но они необходимы для общего развития, а кому-то для будущей профессии. С другой стороны, элементарные знания об электричестве, его устройстве, особенностей в домашних условиях помогут предостеречь себя от беды. Недаром закон Ома называют основным законом электричества. Домашнему мастеру нужно обладать знаниями в области электричества, чтобы не допустить перенапряжения, что может повлечь увеличению нагрузки и возникновению пожара.

Понятие электрического сопротивления

Зависимость между основными физическими величинами электрической цепи – сопротивлением, напряжением, силой тока открыл немецкий физик Георг Симон Ом.

Электросопротивление проводника это величина, характеризующая его противостояние электрическому току. Иными словами, часть электронов под действием электрического тока на проводник покидает свое место в кристаллической решетке и направляется к положительному полюсу проводника. Часть электронов остается в решетке, продолжая вращаться вокруг атома ядра. Данные электроны и атомы образуют электросопротивление, препятствующее продвижению высвободившихся частиц.

Вышеописанный процесс применим ко всем металлам, но сопротивление в них происходит по-разному. Это связано с разностью размеров, форм, материала, из которого состоит проводник. Соответственно размеры кристаллической решетки имеют неодинаковую форму у разных материалов, следовательно, электросопротивление продвижению по ним тока происходит не одинаково.

Из данного понятия вытекает определение удельного сопротивления вещества, что является индивидуальным показателем для каждого металла в отдельности. Удельное электрическое сопротивление (УЭС) это физическая величина, обозначающаяся греческой буквой ρ и характеризующаяся способностью металла воспрепятствовать прохождению электричества через него.

Медь – основной материал для проводников

УЭС вещества рассчитывается по формуле, где одним из важных показателей является температурный коэффициент электросопротивления. Таблица содержит значения УЭС трех известных металлов в диапазоне температур от 0 до 100°C.

Если взять показатель УЭС железа, как одного из доступных материалов, равного 0,1 Ом, то для 1 Ом понадобится 10 метров. Самым низким электросопротивлением обладает серебро, для его показателя 1 Ом выйдет 66,7 метров. Значительная разница, но серебро является дорогостоящим металлом, использование которого повсеместно нецелесообразно. Следующим по показателям идет медь, где на 1 Ом необходимо 57,14 метров. В связи с доступностью, стоимостью по сравнению с серебром, медь является одним из популярных материалов для использования ее в электрических сетях. Низкое удельное сопротивление медного провода или сопротивление медной проволоки дает возможность использовать медный проводник во многих отраслях науки, техники, а также в промышленном и бытовом назначении.

Величина удельного сопротивления

УЭС величина непостоянная, она изменяется в зависимости от следующих факторов:

  • Размер. Чем больше диаметр проводника, тем больше электронов он через себя пропускает. Следовательно, чем его размер меньше, тем больше УЭС.
  • Длина. Электроны проходят через атомы поэтому чем длиннее проволока, тем больше приходится преодолевать через них электронам. При расчетах необходимо учитывать длину, размер провода, потому что чем длиннее, тоньше провод, тем его УЭС больше и наоборот. Не рассчитав нагрузку используемого оборудования можно привести к перегреванию провода и возгоранию.
  • Температура. Известно, что температурный режим имеет большое значение на поведение веществ по-разному. Металл, как ничто другое, изменяет свои свойства при разных температурах. Удельное сопротивление меди напрямую зависит от температурного коэффициента сопротивления меди и при нагревании увеличивается.
  • Коррозия. Образование коррозии существенно увеличивает нагрузку. Происходит это по причине воздействия окружающей среды, попадания влаги, соли, грязи, т. п. проявлений. Рекомендуется изолировать, предохранять все соединения, клеммы, скрутки, устанавливать защиту для оборудования, находящегося на улице, своевременно проводить замену поврежденных проводов, узлов, агрегатов.

Расчет сопротивления

Расчеты производятся при проектировании объектов разного назначения и использования, ведь жизнеобеспечение каждого происходит за счет электричества. Учитывается все, начиная с осветительных приборов, заканчивая технически сложным оборудованием. В домашних условиях также будет нелишним произвести расчет, особенно если предусматривается замена электропроводки. Для частного домостроения необходимо рассчитать нагрузку, иначе «кустарная» сборка электропроводки может привести к возгоранию.

Целью расчета является определение общего сопротивления проводников всех используемых устройств, учитывая их технические параметры. Оно вычисляется по формуле R=p*l/S , где:

R – вычисляемый результат;

p – показатель УЭС из таблицы;

l – длина провода (проводника);

S – диаметр сечения.

Единицы измерения

В международной системе единиц физических величин (СИ) электрическое сопротивление измеряется в Омах (Ом). Единица измерения УЭС согласно системе СИ равна такому УЭС вещества, при котором проводник из одного материала длиной 1 м с сечением 1 кв. м. имеет сопротивление 1 Ом. Наглядно применение 1 ом/м относительно разным металлам приведено в таблице.

Значимость удельного сопротивления

Связь удельного сопротивления и проводимости можно рассматривать как обратные величины. Чем больше показатель одного проводника, тем ниже показатель другого и наоборот. Поэтому при вычислении электропроводимости используется расчет 1/r, потому что число обратное к Х, есть 1/Х и наоборот. Удельный показатель обозначается буквой g.

Преимущества электролитической меди

Низким показателем УЭС (после серебра) как преимуществом, медь не ограничивается. Она обладает уникальными по своим характеристикам свойствами, а именно пластичностью, высокой ковкостью. Благодаря таким качествам изготавливается высокой степени чистоты электролитическая медь для производства кабелей, которые используются в электроприборах, компьютерной технике, электроиндустрии и автомобилестроении.

Зависимость показателя сопротивления от температуры

Температурный коэффициент является величиной, которая равняется изменению напряжения части цепи и УЭС металла в результате изменений температуры. Большинство металлов склонно к росту УЭС при увеличении температуры из-за тепловых колебаний кристаллической решетки. Температурный коэффициент сопротивления меди влияет на удельное сопротивление медного провода и при температуре от 0 до 100°C составляет 4,1·10− 3(1/Кельвин). У серебра данный показатель при тех же условиях имеет значение 3,8, а у железа 6,0. Это еще раз доказывает эффективность использования меди в роли проводника.

Электрическое сопротивление - физическая величина, которая показывает, какое препятствие создается току при его прохождении по проводнику . Единицами измерения служат Омы, в честь Георга Ома. В своем законе он вывел формулу для нахождения сопротивления, которая приведена ниже.

Рассмотрим сопротивление проводников на примере металлов. Металлы имеют внутреннее строение в виде кристаллической решетки. Эта решетка имеет строгую упорядоченность, а её узлами являются положительно заряженные ионы. Носителями заряда в металле выступают “свободные” электроны, которые не принадлежат определенному атому, а хаотично перемещаются между узлами решетки. Из квантовой физики известно, что движение электронов в металле это распространение электромагнитной волны в твердом теле. То есть электрон в проводнике движется со скоростью света (практически), и доказано, что он проявляет свойства не только как частица, но еще и как волна. А сопротивление металла возникает в результате рассеяния электромагнитных волн (то есть электронов) на тепловых колебаниях решетки и её дефектах. При столкновении электронов с узлами кристаллической решетки часть энергии передается узлам, вследствие чего выделяется энергия. Эту энергию можно вычислить при постоянном токе , благодаря закону Джоуля-Ленца – Q=I 2 Rt. Как видите чем больше сопротивление, тем больше энергии выделяется.

Удельное сопротивление

Существует такое важное понятие как удельное сопротивление, это тоже самое сопротивление, только в единице длины. У каждого металла оно свое, например у меди оно равно 0,0175 Ом*мм2/м, у алюминия 0,0271 Ом*мм2/м. Это значит, брусок из меди длиной 1 м и площадью поперечного сечения 1 мм2 будет иметь сопротивление 0,0175 Ом, а такой же брусок, но из алюминия будет иметь сопротивление 0,0271 Ом. Выходит что электропроводность меди выше чем у алюминия. У каждого металла удельное сопротивление свое, а рассчитать сопротивление всего проводника можно по формуле

где p – удельное сопротивление металла, l – длина проводника, s – площадь поперечного сечения.

Значения удельных сопротивлений приведены в таблице удельных сопротивлений металлов (20°C)

Вещество

p , Ом*мм 2 /2

α,10 -3 1/K

Алюминий

0.0271

Вольфрам

0.055

Железо

0.098

Золото

0.023

Латунь

0.025-0.06

Манганин

0.42-0.48

0,002-0,05

Медь

0.0175

Никель

Константан

0.44-0.52

0.02

Нихром

0.15

Серебро

0.016

Цинк

0.059

Кроме удельного сопротивления в таблице есть значения ТКС, об этом коэффициенте чуть позже.

Зависимость удельного сопротивления от деформаций

При холодной обработке металлов давлением, металл испытывает пластическую деформацию. При пластической деформации кристаллическая решетка искажается, количество дефектов становится больше. С увеличением дефектов кристаллической решетки, сопротивление течению электронов по проводнику растет, следовательно, удельное сопротивление металла увеличивается. К примеру, проволоку изготавливают методом протяжки, это значит, что металл испытывает пластическую деформацию, в результате чего, удельное сопротивление растет. На практике для уменьшения сопротивления применяют рекристаллизационный отжиг, это сложный технологический процесс, после которого кристаллическая решетка как бы, “расправляется” и количество дефектов уменьшается, следовательно, и сопротивление металла тоже.

При растяжении или сжатии, металл испытывает упругую деформацию. При упругой деформации вызванной растяжением, амплитуды тепловых колебаний узлов кристаллической решетки увеличиваются, следовательно, электроны испытывают большие затруднения, и в связи с этим, увеличивается удельное сопротивление. При упругой деформации вызванной сжатием, амплитуды тепловых колебаний узлов уменьшаются, следовательно, электронам проще двигаться, и удельное сопротивление уменьшается.

Влияние температуры на удельное сопротивление

Как мы уже выяснили выше, причиной сопротивления в металле являются узлы кристаллической решетки и их колебания. Так вот, при увеличении температуры, тепловые колебания узлов увеличиваются, а значит, удельное сопротивление также увеличивается. Существует такая величина как температурный коэффициент сопротивления (ТКС), который показывает насколько увеличивается, или уменьшается удельное сопротивление металла при нагреве или охлаждении. Например, температурный коэффициент меди при 20 градусах по цельсию равен 4.1 · 10 − 3 1/градус. Это означает что при нагреве, к примеру, медной проволоки на 1 градус цельсия, её удельное сопротивление увеличится на 4.1 · 10 − 3 Ом. Удельное сопротивление при изменении температуры можно вычислить по формуле

где r это удельное сопротивление после нагрева, r 0 – удельное сопротивление до нагрева, a – температурный коэффициент сопротивления, t 2 – температура до нагрева, t 1 - температура после нагрева.

Подставив наши значения, мы получим: r=0,0175*(1+0.0041*(154-20))=0,0271 Ом*мм 2 /м. Как видите наш брусок из меди длиной 1 м и площадью поперечного сечения 1 мм 2 , после нагрева до 154 градусов, имел бы сопротивление, как у такого же бруска, только из алюминия и при температуре равной 20 градусов цельсия.

Свойство изменения сопротивления при изменении температуры, используется в термометрах сопротивления. Эти приборы могут измерять температуру основываясь на показаниях сопротивления. У термометров сопротивления высокая точность измерений, но малые диапазоны температур.

На практике, свойства проводников препятствовать прохождению тока используются очень широко. Примером может служить лампа накаливания, где нить из вольфрама, нагревается за счет высокого сопротивления металла, большой длины и узкого сечения. Или любой нагревательный прибор, где спираль разогревается благодаря высокому сопротивлению. В электротехнике, элемент главным свойством которого является сопротивление, называется – резистор . Резистор применяется практически в любой электрической схеме.

  • Константан (58,8 Cu, 40 Ni, 1,2 Mn)
  • Манганин (85 Cu, 12 Mn, 3 Ni)
  • Нейзильбер (65 Cu, 20 Zn, 15 Ni)
  • Никелин (54 Cu, 20 Zn, 26 Ni)
  • Нихром (67,5 Ni, 15 Cr, 16 Fe, 1,5 Mn)
  • Реонат (84Cu, 12Mn, 4 Zn)
  • Фехраль (80 Fe, 14 Cr, 6 Al)

Удельное сопротивление нихрома

Каждое тело, через которое пропускается электрический ток, автоматически оказывает ему определенное сопротивление. Свойство проводника противостоять электрическому току принято называть электрическим сопротивлением.

Рассмотрим электронную теорию данного явления. При движении по проводнику свободные электроны постоянно встречают на своем пути другие электроны и атомы. Взаимодействуя с ними, свободный электрон теряет часть своего заряда. Таким образом, электроны сталкиваются с сопротивлением со стороны материала проводника. Каждое тело имеет свою атомную структуру, которая оказывает электрическому току разное сопротивление. Единицей сопротивления принято считать Ом. Обозначается сопротивление материалов — R или r.

Чем меньше сопротивление проводника, тем легче электрическому току пройти через это тело. И наоборот: чем выше сопротивление, тем хуже тело проводит электрический ток.

Сопротивление каждого отдельно взятого проводника зависит от свойств материала, из которого он изготовлен. Для точной характеристики электрического сопротивления того или иного материала было введено понятие — удельное сопротивление (нихрома, алюминия и т. д.). Удельным считается сопротивление проводника длиной до 1 м, сечение которого — 1 кв. мм. Этот показатель обозначается буквой p. Каждый материал, использующийся в производстве проводника, обладает своим удельным сопротивлением. Для примера рассмотрим удельное сопротивление нихрома и фехрали (более 3 мм):

  • Х15Н60 — 1.13 Ом*мм/м
  • Х23Ю5Т — 1.39 Ом*мм/м
  • Х20Н80 — 1.12 Ом*мм/м
  • ХН70Ю — 1.30 Ом*мм/м
  • ХН20ЮС — 1.02 Ом*мм/м

Удельное сопротивление нихрома, фехрали указывает на основную сферу их применения: изготовление аппаратов теплового действия, бытовых приборов и электронагревательных элементов промышленных печей.

Поскольку нихром и фехраль преимущественно используются в производстве нагревательных элементов, то самая распространенная продукция — нихромовая нить, лента, полоса Х15Н60 и Х20Н80, а также фехралевая проволока Х23Ю5Т.

Для каждого проводника существует понятие удельного сопротивления. Эта величина состоит из Омов, умножаемых на квадратный миллиметр, далее, делимое на один метр. Иными словами, это сопротивление проводника, длина которого составляет 1 метр, а сечение - 1 мм 2 . То же самое представляет собой и удельное сопротивление меди - уникального металла, получившего широкое распространение в электротехнике и энергетике.

Свойства меди

Благодаря своим свойствам этот металл одним из первых начал применяться в области электричества. Прежде всего, медь является ковким и пластичным материалом с отличными свойствами электропроводимости. До сих пор в энергетике нет равноценной замены этому проводнику.

Особенно ценятся свойства специальной электролитической меди, обладающей высокой чистотой. Этот материал позволил выпускать провода с минимальной толщиной в 10 микрон.

Кроме высокой электропроводности, медь очень хорошо поддается лужению и другим видам обработки.

Медь и ее удельное сопротивление

Любой проводник оказывает сопротивление, если через него пропустить электрический ток. Значение зависит от длины проводника и его сечения, а также от действия определенных температур. Поэтому, удельное сопротивление проводников зависит не только от самого материала, но и от его определенной длины и площади поперечного сечения. Чем легче материал пропускает через себя заряд, тем ниже его сопротивление. Для меди, показатель удельного сопротивления составляет 0,0171 Ом х 1 мм 2 /1 м и лишь немного уступает серебру. Однако, использование серебра в промышленных масштабах экономически невыгодно, поэтому, медь является лучшим проводником, используемым в энергетике.

Удельное сопротивление меди связано и с ее высокой проводимостью. Эти величины прямо противоположны между собой. Свойства меди, как проводника, зависят и от температурного коэффициента сопротивления. Особенно, это касается сопротивление, на которое оказывает влияние температура проводника.

Таким образом, благодаря своим свойствам, медь получила широкое распространение не только в качестве проводника . Этот металл используется в большинстве приборов, устройств и агрегатов, функционирование которых связано с электрическим током.