Нахождение угла между прямой и плоскостью. Угол между прямой и плоскостью

\(\blacktriangleright\) Угол между прямой и плоскостью – это угол между прямой и ее проекцией на эту плоскость (т.е. это угол \(0\leqslant \alpha\leqslant 90^\circ\) ).

\(\blacktriangleright\) Чтобы найти угол между прямой \(a\) и плоскостью \(\phi\) (\(a\cap\phi=B\) ), нужно:

Шаг 1: из какой-то точки \(A\in a\) провести перпендикуляр \(AO\) на плоскость \(\phi\) (\(O\) – основание перпендикуляра);

Шаг 2: тогда \(BO\) – проекция наклонной \(AB\) на плоскость \(\phi\) ;

Шаг 3: тогда угол между прямой \(a\) и плоскостью \(\phi\) равен \(\angle ABO\) .

Задание 1 #2850

Уровень задания: Сложнее ЕГЭ

Прямая \(l\) пересекает плоскость \(\alpha\) . На прямой \(l\) отмечен отрезок \(AB=25\) , причем известно, что проекция этого отрезка на плоскость \(\alpha\) равна \(24\) . Найдите синус угла между прямой \(l\) и плоскостью \(\alpha\)

Рассмотрим рисунок:

Пусть \(A_1B_1=24\) – проекция \(AB\) на плоскость \(\alpha\) , значит, \(AA_1\perp \alpha\) , \(BB_1\perp \alpha\) . Так как две прямые, перпендикулярные к плоскости, лежат в одной плоскости, то \(A_1ABB_1\) – прямоугольная трапеция. Проведем \(AH\perp BB_1\) . Тогда \(AH=A_1B_1=24\) . Следовательно, по теореме Пифагора \ Заметим также, что угол между прямой и плоскостью – это угол между прямой и ее проекцией на плоскость, следовательно, искомый угол – угол между \(AB\) и \(A_1B_1\) . Так как \(AH\parallel A_1B_1\) , то угол между \(AB\) и \(A_1B_1\) равен углу между \(AB\) и \(AH\) .
Тогда \[\sin\angle BAH=\dfrac{BH}{AB}=\dfrac7{25}=0,28.\]

Ответ: 0,28

Задание 2 #2851

Уровень задания: Сложнее ЕГЭ

\(ABC\) – правильный треугольник со стороной \(3\) , \(O\) – точка, лежащая вне плоскости треугольника, причем \(OA=OB=OC=2\sqrt3\) . Найдите угол, который образуют прямые \(OA, OB, OC\) с плоскостью треугольника. Ответ дайте в градусах.

Проведем перпендикуляр \(OH\) на плоскость треугольника.

Рассмотрим \(\triangle OAH, \triangle OBH, \triangle OCH\) . Они являются прямоугольными и равны по катету и гипотенузе. Следовательно, \(AH=BH=CH\) . Значит, \(H\) – точка, находящаяся на одинаковом расстоянии от вершин треугольника \(ABC\) . Следовательно, \(H\) – центр описанной около него окружности. Так как \(\triangle ABC\) – правильный, то \(H\) – точка пересечения медиан (они же высоты и биссектрисы).
Так как угол между прямой и плоскостью – это угол между прямой и ее проекцией на эту плоскость, а \(AH\) – проекция \(AO\) на плоскость треугольника, то угол между \(AO\) и плоскостью треугольника равен \(\angle OAH\) .
Пусть \(AA_1\) – медиана в \(\triangle ABC\) , следовательно, \ Так как медианы точкой пересечения делятся в отношении \(2:1\) , считая от вершины, то \ Тогда из прямоугольного \(\triangle OAH\) :\[\cos OAH=\dfrac{AH}{AO}=\dfrac12\quad\Rightarrow\quad \angle OAH=60^\circ.\]

Заметим, что из равенства треугольников \(OAH, OBH, OCH\) следует, что \(\angle OAH=\angle OBH=\angle OCH=60^\circ\) .

Ответ: 60

Задание 3 #2852

Уровень задания: Сложнее ЕГЭ

Прямая \(l\) перпендикулярна плоскости \(\pi\) . Прямая \(p\) не лежит в плоскости \(\pi\) и не параллельна ей, также не параллельна прямой \(l\) . Найдите сумму углов между прямыми \(p\) и \(l\) и между прямой \(p\) и плоскостью \(\pi\) . Ответ дайте в градусах.

Из условия следует, что прямая \(p\) пересекает плоскостью \(\pi\) . Пусть \(p\cap l=O\) , \(l\cap \pi=L\) , \(p\cap\pi=P\) .

Тогда \(\angle POL\) – угол между прямыми \(p\) и \(l\) .
Так как угол между прямой и плоскостью – угол между прямой и ее проекцией на эту плоскость, то \(\angle OPL\) – угол между \(p\) и \(\pi\) . Заметим, что \(\triangle OPL\) прямоугольный с \(\angle L=90^\circ\) . Так как сумма острых углов прямоугольного треугольника равна \(90^\circ\) , то \(\angle POL+\angle OPL=90^\circ\) .

Замечание.
Если прямая \(p\) не пересекает прямую \(l\) , то проведем прямую \(p"\parallel p\) , пересекающую \(l\) . Тогда угол между прямой \(p\) и \(l\) будет равен углу между \(p"\) и \(l\) . Аналогично угол между \(p\) и \(\pi\) будет равен углу между \(p"\) и \(\pi\) . А для прямой \(p"\) уже верно предыдущее решение.

Ответ: 90

Задание 4 #2905

Уровень задания: Сложнее ЕГЭ

\(ABCDA_1B_1C_1D_1\) – куб. Точка \(N\) – середина ребра \(BB_1\) , а точка \(M\) – середина отрезка \(BD\) . Найдите \(\mathrm{tg}^2\, \alpha\) , где \(\alpha\) – угол между прямой, содержащей \(MN\) , и плоскостью \((A_1B_1C_1D_1)\) . Ответ дайте в градусах.


\(NM\) – средняя линия в треугольнике \(DBB_1\) , тогда \(NM \parallel B_1D\) и \(\alpha\) равен углу между \(B_1D\) и плоскостью \((A_1B_1C_1D_1)\) .

Так как \(DD_1\) – перпендикуляр к плоскости \(A_1B_1C_1D_1\) , то \(B_1D_1\) проекция \(B_1D\) на плоскость \((A_1B_1C_1D_1)\) и угол между \(B_1D\) и плоскостью \((A_1B_1C_1D_1)\) есть угол между \(B_1D\) и \(B_1D_1\) .

Пусть ребро куба \(x\) , тогда по теореме Пифагора \ В треугольнике \(B_1D_1D\) тангенс угла между \(B_1D\) и \(B_1D_1\) равен \(\mathrm{tg}\,\angle DB_1D_1=\dfrac{DD_1}{B_1D_1} = \dfrac{1}{\sqrt{2}}=\mathrm{tg}\,\alpha\) , откуда \(\mathrm{tg}^2\, \alpha = \dfrac{1}{2}\) .

Ответ: 0,5

Задание 5 #2906

Уровень задания: Сложнее ЕГЭ

\(ABCDA_1B_1C_1D_1\) – куб. Точка \(N\) – середина ребра \(BB_1\) , а точка \(M\) делит отрезок \(BD\) в отношении \(1:2\) , считая от вершины \(B\) . Найдите \(9\mathrm{ctg}^2\, \alpha\) , где \(\alpha\) – угол между прямой, содержащей \(MN\) , и плоскостью \((ABC)\) . Ответ дайте в градусах.


Так как \(NB\) – часть \(BB_1\) , а \(BB_1\perp (ABC)\) , то и \(NB\perp (ABC)\) . Следовательно, \(BM\) – проекция \(NM\) на плоскость \((ABC)\) . Значит, угол \(\alpha\) равен \(\angle NMB\) .

Пусть ребро куба равно \(x\) . Тогда \(NB=0,5x\) . По теореме Пифагора \(BD=\sqrt{x^2+x^2}=\sqrt2x\) . Так как по условию \(BM:MD=1:2\) , то \(BM=\frac13BD\) , следовательно, \(BM=\frac{\sqrt2}3x\) .

Тогда из прямоугольного \(\triangle NBM\) : \[\mathrm{ctg}\,\alpha=\mathrm{ctg}\,\angle NMB=\dfrac{BM}{NB}=\dfrac{2\sqrt2}3 \quad\Rightarrow\quad 9\mathrm{ctg}^2\,\alpha=8.\]

Ответ: 8

Задание 6 #2907

Уровень задания: Сложнее ЕГЭ

Чему равен \(\mathrm{ctg^2}\,\alpha\) , если \(\alpha\) – угол наклона диагонали куба к одной из его граней?


Искомый угол будет совпадать с углом между диагональю куба и диагональю любой его грани, т.к. в данном случае диагональ куба будет являться наклонной, диагональ грани – проекцией этой наклонной на плоскость грани. Таким образом, искомый угол будет равен, например, углу \(C_1AC\) . Eсли обозначить ребро куба за \(x\) , то \(AC=\sqrt{x^2+x^2}=\sqrt2 x\) , тогда квадрат котангенса искомого угла: \[\mathrm{ctg^2}\,\alpha =(AC:CC_1)^2= (\sqrt2 x:x)^2 = 2.\]

Ответ: 2

Задание 7 #2849

Уровень задания: Сложнее ЕГЭ

\(\angle BAH=\angle CAH=30^\circ\) .
По теореме Пифагора \ Следовательно, \[\cos 30^\circ=\dfrac{AB}{AH}\quad\Rightarrow\quad AH=\dfrac{AB}{\cos 30^\circ}=2.\] Так как \(OH\perp (ABC)\) , то \(OH\) перпендикулярно любой прямой из этой плоскости, значит, \(\triangle OAH\) – прямоугольный. Тогда \[\cos \angle OAH=\dfrac{AH}{AO}=\dfrac25=0,4.\]

Ответ: 0,4

Учащимся старших классов на этапе подготовки к ЕГЭ по математике будет полезно научиться справляться с заданиями из раздела «Геометрия в пространстве», в которых требуется найти угол между прямой и плоскостью. Опыт прошлых лет показывает, что подобные задачи вызывают у выпускников определенные сложности. При этом знать базовую теорию и понимать, как найти угол между прямой и плоскостью, должны старшеклассники с любым уровнем подготовки. Только в этом случае они смогут рассчитывать на получение достойных баллов.

Основные нюансы

Как и другие стереометрические задачи ЕГЭ, задания, в которых требуется найти углы и расстояния между прямыми и плоскостями, могут быть решены двумя методами: геометрическим и алгебраическим. Учащиеся могут выбрать наиболее удобный для себя вариант. Согласно геометрическому методу, необходимо найти на прямой подходящую точку, опустить из нее перпендикуляр на плоскость и построить проекцию. После этого выпускнику останется применить базовые теоретические знания и решить планиметрическую задачу на вычисление угла. Алгебраический метод предполагает введение системы координат для нахождения искомой величины. Необходимо определить координаты двух точек на прямой, правильно составить уравнение плоскости и решить его.

Эффективная подготовка вместе со «Школково»

Чтобы занятия проходили легко и даже сложные задания не вызывали затруднений, выбирайте наш образовательный портал. Здесь представлен весь необходимый материал для успешной сдачи аттестационного испытания. Нужную базовую информацию вы найдете в разделе «Теоретическая справка». А для того чтобы попрактиковаться в выполнении заданий, достаточно перейти в «Каталог» на нашем математическом портале. В этом разделе собрана большая подборка упражнений разной степени сложности. В «Каталоге» регулярно появляются новые задания.

Выполнять задачи на нахождение угла между прямой и плоскостью или на , российские школьники могут в режиме онлайн, находясь в Москве или другом городе. По желанию учащегося любое упражнение можно сохранить в «Избранное». Это позволит при необходимости быстро его найти и обсудить ход его решения с преподавателем.

Это означает найти угол между этой прямой и ее проекцией на данную плоскость.

Пространственная модель иллюстрирующая задачу представлена на рисунке.

План решения задачи:
1. Из произвольной точки A a опускаем перпендикуляр на плоскость α ;
2. Определим точку встречи этого перпендикуляра с плоскостью α . Точка A α - ортогональная проекция A на плоскость α ;
3. Находим точку пересечения прямой a с плоскостью α . Точка a α - след прямой a на плоскости α ;
4. Проводим (A α a α ) - проекцию прямой a на плоскость α ;
5. Определяем действительную величину ∠Aa α A α , т. е. ∠φ .

Решение задачи найти угол между прямой и плоскостью может быть значительно упрощено, если определять не ∠φ между прямой и плоскостью, а дополняющий до 90° ∠γ . В этом случае отпадает необходимость в определении проекции точки A и проекции прямой a на плоскость α . Зная величину γ , вычисляем по формуле:

$ φ = 90° - γ $

a и плоскостью α , заданной параллельными прямыми m и n .

a α
Вращением вокруг горизонтали заданной точками 5 и 6 определяем натуральную величину ∠γ . Зная величину γ , вычисляем по формуле:

$ φ = 90° - γ $

Определение угла между прямой a и плоскостью α , заданной треугольником BCD.

Из произвольной точки на прямой a опускаем перпендикуляр к плоскости α
Вращением вокруг горизонтали заданной точками 3 и 4 определяем натуральную величину ∠γ . Зная величину γ , вычисляем по формуле.

На понятии проекции наклонной основано определение угла между прямой и плоскостью. Определение. Углом между прямой линией и плоскостью называется угол между этой прямой и ее проекцией на данную плоскость.

На рис. 341 изображен угол а между наклонной AM и ее проекцией на плоскость К.

Примечание. Если прямая параллельна плоскости или лежит в ней, то угол ее с плоскостью считается равным нулю. Если она перпендикулярна к плоскости, то угол объявляется прямым (предыдущее определение здесь в буквальном смысле неприменимо!). В остальных случаях подразумевается острый угол между прямой и ее проекцией. Поэтому угол между прямой и плоскостью никогда не превышает прямого. Еще заметим, что здесь вернее говорить о мере угла, а не об угле (действительно, речь идет о мере наклона прямой к плоскости, понятие же угла как плоской фигуры, ограниченной двумя лучами, не имеет сюда прямого отношения).

Убедимся еще в одном свойстве острого угла между прямой линией и плоскостью.

Из всех углов, образованных данной прямой и всевозможными прямыми в плоскости, угол с проекцией данной прямой наименьший.

Доказательство. Обратимся к рис. 342. Пусть а - данная прямая, - ее проекция на плоскость - произвольная другая прямая в плоскости К (мы провели ее для удобства через точку А пересечения прямой а с плоскостью ). Отложим на прямой отрезок т. е. равный основанию наклонной МА, где проекция одной из точек наклонной а.

Тогда в треугольниках две стороны равны: сторона AM общая, равны по построению. Но третья сторона в треугольнике больше третьей стороны в треугольнике (наклонная больше перпендикуляра). Значит, и противолежащий угол в больше соответствующего угла а в (см. п. 217): , что и требовалось доказать.

Угол между прямой и плоскостью - это наименьший из углов между данной прямой и всевозможными прямыми в плоскости.

Справедлива и такая

Теорема. Острый угол между прямой, лежащей в плоскости, и проекцией наклонной на эту плоскость меньше угла между этой прямой и самой наклонной.

Доказательство. Пусть - прямая, лежащая в плоскости (рис. 342), а - наклонная к плоскости, т - ее проекция на плоскость. Будем рассматривать прямую как наклонную к плоскости тогда будет ее проекцией на указанную плоскость и по предыдущему свойству найдем: что и требовалось доказать. По теореме о трех перпендикулярах видно, что в случае, когда прямая в плоскости перпендикулярна к, проекции наклонной (случай не острого, а прямого угла), прямая также перпендикулярна и к самой наклонной; в этом случае оба угла, о которых мы говорим, прямые и потому равны между собой.

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Понятие проекции фигуры на плоскость

Для введения понятия угла между прямой и плоскостью вначале необходимо разобраться в таком понятии, как проекция произвольной фигуры на плоскость.

Определение 1

Пусть нам дана произвольная точка $A$. Точка $A_1$ называется проекцией точки $A$ на плоскость $\alpha $, если она является основанием перпендикуляра, проведенного из точки $A$ на плоскость $\alpha $ (рис. 1).

Рисунок 1. Проекция точки на плоскость

Определение 2

Пусть нам дана произвольная фигура $F$. Фигура $F_1$ называется проекцией фигуры $F$ на плоскость $\alpha $, составленная из проекций всех точек фигуры $F$ на плоскость $\alpha $ (рис. 2).

Рисунок 2. Проекция фигуры на плоскость

Теорема 1

Проекция не перпендикулярной плоскости прямой является прямая.

Доказательство.

Пусть нам дана плоскость $\alpha $ и пересекающая ее прямая $d$, не перпендикулярная ей. Выберем на прямой $d$ точку $M$ и проведем её проекцию $H$ на плоскость $\alpha $. Через прямую $(MH)$ проведем плоскость $\beta $. Очевидно, что эта плоскость будет перпендикулярна плоскости $\alpha $. Пусть они пересекаются по прямой $m$. Рассмотрим произвольную точку $M_1$ прямой $d$ и проведем через нее прямую $(M_1H_1$) параллельно прямой $(MH)$ (рис. 3).

Рисунок 3.

Так как плоскость $\beta $ перпендикулярна плоскости $\alpha $, то $M_1H_1$ перпендикулярно прямой $m$, то есть точка $H_1$ - проекция точки $M_1$ на плоскость $\alpha $. В силу произвольности выбора точки $M_1$ все точки прямой $d$ проецируются на прямую $m$.

Рассуждая аналогично. В обратном порядке, будем получать, что каждая точка прямой $m$ является проекцией какой-либо точки прямой $d$.

Значит, прямая $d$ проецируется на прямую $m$.

Теорема доказана.

Понятие угла между прямой и плоскостью

Определение 3

Угол между прямой, пересекающей плоскость и её проекцией на эту плоскость, называется углом между прямой и плоскостью (рис. 4).

Рисунок 4. Угол между прямой и плоскостью

Отметим здесь несколько замечаний.

Замечание 1

Если прямая перпендикулярна к плоскости. То угол между прямой и плоскостью равен $90^\circ$.

Замечание 2

Если прямая параллельна или лежит в плоскости. То угол между прямой и плоскостью равен $0^\circ$.

Примеры задач

Пример 1

Пусть нам дан параллелограмм $ABCD$ и точка $M$, не лежащая в плоскости параллелограмма. Доказать, что треугольники $AMB$ и $MBC$ являются прямоугольными, если точка $B$ -- проекция точки $M$ на плоскость параллелограмма.

Доказательство.

Изобразим условие задачи на рисунке (рис. 5).

Рисунок 5.

Так как точка $B$ -- проекция точки $M$ на плоскость $(ABC)$, то прямая $(MB)$ перпендикулярна плоскости $(ABC)$. По замечанию 1, получаем, что угол между прямой $(MB)$ и плоскостью $(ABC)$ равен $90^\circ$. Следовательно

\[\angle MBC=MBA={90}^0\]

Значит, треугольники $AMB$ и $MBC$ являются прямоугольными.

Пример 2

Дана плоскость $\alpha $. Под углом $\varphi $ к этой плоскости проведен отрезок, начало которого лежит в данной плоскости. Проекция этого отрезка в два раза меньше самого отрезка. Найти величину $\varphi $.

Решение.

Рассмотрим рисунок 6.

Рисунок 6.

По условию, имеем

Так как треугольник $BCD$ прямоугольный, то, по определению косинуса

\ \[\varphi =arccos\frac{1}{2}={60}^0\]