Чему равна сумма углов. Научная электронная библиотека

Доказательство

Пусть ABC" - произвольный треугольник. Проведем через вершину B прямую, параллельную прямой AC (такая прямая называется прямой Евклида). Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны от прямой BC .Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD . Поэтому сумма углов треугольника при вершинах B и С равна углу ABD .Сумма всех трех углов треугольника равна сумме углов ABD и BAC . Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB , то их сумма равна 180°. Теорема доказана.

Следствия

Из теоремы следует, что у любого треугольника два угла острые. Действительно, применяя доказательство от противного , допустим, что у треугольника только один острый угол или вообще нет острых углов. Тогда у этого треугольника есть, по крайней мере, два угла, каждый из которых не меньше 90°. Сумма этих углов не меньше 180°. А это невозможно, так как сумма всех углов треугольника равна 180°. Что и требовалось доказать.

Обобщение в симплекс теории

Где -угол между i и j гранями симплекса.

Примечания

  • На сфере сумма углов треугольника всегда превышает 180°, разница называется сферическим избытком и пропорциональна площади треугольника.
  • В плоскости Лобачевского сумма углов треугольника всегда меньше 180°. Разность также пропорциональна площади треугольника.

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Теорема о сумме углов треугольника" в других словарях:

    Свойство многоугольников в евклидовой геометрии: Сумма углов n угольника равна 180°(n 2). Содержание 1 Доказательство 2 Замечание … Википедия

    Теорема Пифагора одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. Содержание 1 … Википедия

    Теорема Пифагора одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. Содержание 1 Формулировки 2 Доказательства … Википедия

    Теорема косинусов обобщение теоремы Пифагора. Квадрат стороны треугольника равен сумме квадратов двух других его сторон без удвоенного произведения этих сторон на косинус угла между ними. Для плоского треугольника со сторонами a,b,c и углом α… … Википедия

    У этого термина существуют и другие значения, см. Треугольник (значения). Треугольник (в евклидовом пространстве) это геометрическая фигура, образованная тремя отрезками, которые соединяют три не лежащие на одной прямой точки. Три точки,… … Википедия

    Стандартные обозначения Треугольник простейший многоугольник, имеющий 3 вершины (угла) и 3 стороны; часть плоскости, ограниченная тремя точками, не лежащими на одной прямой, и тремя отрезками, попарно соединяющими эти точки. Вершины треугольника … Википедия

    Древнегреческий математик. Работал в Александрии в III в. до н. э. Главный труд «Начала» (15 книг), содержащий основы античной математики элементарной геометрии, теории чисел, общей теории отношений и метода определения площадей и объёмов,… … Энциклопедический словарь

    - (умер между 275 и 270 до н. э.) древнегреческий математик. Сведения о времени и месте его рождения до нас не дошли, однако известно, что Евклид жил в Александрии и расцвет его деятельности приходится на время царствования в Египте Птолемея I… … Большой Энциклопедический словарь

    Геометрия, сходная с геометрией Евклида в том, что в ней определено движение фигур, но отличающаяся от евклидовой геометрии тем, что один из пяти ее постулатов (второй или пятый) заменен его отрицанием. Отрицание одного из евклидовых постулатов… … Энциклопедия Кольера

>>Геометрия: Сумма углов треугольника. Полные уроки

ТЕМА УРОКА: Сумма углов треугольника.

Цели урока:

  • Закрепление и проверка знаний учащихся по теме: «Сумма углов треугольника»;
  • Доказательство свойства углов треугольника;
  • Применение этого свойства при решении простейших задач;
  • Использование исторического материала для развития познавательной активности учащихся;
  • Привитие навыка аккуратности при построении чертежей.

Задачи урока:

  • Проверить умение учащихся решать задачи.

План урока:

  1. Треугольник;
  2. Теорема о сумме углов треугольника;
  3. Пример задач.

Треугольник.

Файл:O.gif Треугольник - простейший многоугольник, имеющий 3 вершины (угла) и 3 стороны; часть плоскости, ограниченная тремя точками, и тремя отрезками, попарно соединяющими эти точки.
Трём точкам пространства, не лежащим на одной прямой, соответствует одна и только одна плоскость.
Любой многоугольник можно разбить на треугольники - этот процесс называется триангуляция .
Существует раздел математики, целиком посвящённый изучению закономерностей треугольников - Тригонометрия .

Теорема о сумме углов треугольника.

Файл:T.gif Теорема о сумме углов треугольника - классическая теорема евклидовой геометрии, утверждает что cумма углов треугольника равна 180°.

Доказательство":

Пусть дан Δ ABC. Проведем через вершину B прямую, параллельную (AC) и отметим на ней точку D так, чтобы точки A и D лежали по разные стороны от прямой BC. Тогда угол (DBC) и угол (ACB) равны как внутренние накрест лежащие при параллельных прямых BD и AC и секущей (BC). Тогда сумма углов треугольника при вершинах B и C равна углу (ABD). Но угол (ABD) и угол (BAC) при вершине A треугольника ABC являются внутренними односторонними при параллельных прямых BD и AC и секущей (AB), и их сумма равна 180°. Следовательно, сумма углов треугольника равна 180°. Теорема доказана.


Следствия.

Внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним.

Доказательство:

Пусть дан Δ ABC. Точка D лежит на прямой AC так, что A лежит между C и D. Тогда BAD – внешний к углу треугольника при вершине A и A + BAD = 180°. Но A + B + C = 180°, и, следовательно, B + C = 180° – A. Отсюда BAD = B + C. Следствие доказано.


Следствия.

Внешний угол треугольника больше любого угла треугольника, не смежного с ним.

Задача.

Внешним углом треугольника называется угол, смежный с каким-нибудь углом этого треугольника. Докажите, что внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним.
(Рис.1)

Решение:

Пусть в Δ АВС ∠DАС – внешний (Рис.1). Тогда ∠DАС=180°-∠ВАС (по свойству смежных углов), по теореме о сумме углов треугольника ∠В+∠С =180°-∠ВАС. Из этих равенств получим ∠DАС=∠В+∠С

Интересный факт:

Сумма углов треугольника":

В геометрии Лобачевского сумма углов треугольника всегда меньше 180. В геометрии Эвклида она всегда равна 180 . В геометрии Римана сумма углов треугольника всегда больше 180.

Из истории математики:

Евклид (III в до н.э) в труде «Начала» приводит такое определение: «Параллельные суть прямые, которые находятся в одной плоскости и, будучи продолжены в обе стороны неограниченно, ни с той, ни с другой стороны между собой не встречаются».
Посидоний (I в до н.э) «Две прямые, лежащие в одной плоскости, равноотстоящие друг от друга»
Древнегреческий учёный Папп (III в до н.э) ввёл символ параллельных прямых- знак =. Впоследствии английский экономист Рикардо (1720-1823) этот символ использовал как знак равенства.
Только в XVIII веке стали использовать символ параллельности прямых - знак ||.
Ни на миг не прерывается живая связь между поколениями, ежедневно мы усваиваем опыт, накопленный нашими предками. Древние греки на основе наблюдений и из практического опыта делали выводы, высказывали гипотезы, а затем, на встречах учёных – симпозиумах (буквально « пиршество») – эти гипотезы пытались обосновать и доказать. В то время и сложилось утверждение: « В споре рождается истина».

Вопросы:

  1. Что такое треугольник?
  2. Что гласит теорема о сумме углов треугольника?
  3. Чему равен внешний угол треугольника?

Теорема. Сумма внутренних углов треугольника равна двум прямым углам.

Возьмём какой-нибудь треугольник AВС (рис. 208). Обозначим его внутренние углы цифрами 1, 2 и 3. Докажем, что

∠1 + ∠2 + ∠3 = 180°.

Проведём через какую-нибудь вершину треугольника, например В, прямую МN параллельно АС.

При вершине В мы получили три угла: ∠4, ∠2 и ∠5. Их сумма составляет развёрнутый угол, следовательно, она равна 180°:

∠4 + ∠2 + ∠5 = 180°.

Но ∠4 = ∠1 - это внутренние накрест лежащие углы при параллельных прямых МN и АС и секущей АВ.

∠5 = ∠3 - это внутренние накрест лежащие углы при параллельных прямых МN и АС и секущей ВС.

Значит, ∠4 и ∠5 можно заменить равными им ∠1 и ∠3.

Следовательно, ∠1 + ∠2 + ∠3 = 180°. Теорема доказана.

2. Свойство внешнего угла треугольника.

Теорема. Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.

В самом деле, в треугольнике ABC (рис. 209) ∠1 + ∠2 = 180° - ∠3, но и ∠ВСD, внешний угол этого треугольника, не смежный с ∠1 и ∠2, также равен 180° - ∠3.

Таким образом:

∠1 + ∠2 = 180° - ∠3;

∠BCD = 180° - ∠3.

Следовательно, ∠1 + ∠2= ∠BCD.

Выведенное свойство внешнего угла треугольника уточняет содержание ранее доказанной теоремы о внешнем угле треугольника, в которой утверждалось только, что внешний угол треугольника больше каждого внутреннего угла треугольника, не смежного с ним; теперь же устанавливается, что внешний угол равен сумме обоих внутренних углов, не смежных с ним.

3. Свойство прямоугольного треугольника с углом в 30°.

Теорема. Катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы.

Пусть в прямоугольном треугольнике АСВ угол В равен 30° (рис. 210). Тогда другой его острый угол будет равен 60°.

Докажем, что катет АС равен половине гипотенузы АВ. Продолжим катет АС за вершину прямого угла С и отложим отрезок СМ, равный отрезку АС. Точку М соединим с точкой В. Полученный треугольник ВСМ равен треугольнику АСВ. Мы видим, что каждый угол треугольника АВМ равен 60°, следовательно, этот треугольник - равносторонний.

Катет АС равен половине АМ, а так как АМ равняется АВ, то катет АС будет равен половине гипотенузы АВ.

Цели и задачи:

Образовательные:

  • повторить и обобщить знания о треугольнике;
  • доказать теорему о сумме углов треугольника;
  • практически убедиться в правильности формулировки теоремы;
  • научиться применять полученные знания при решении задач.

Развивающие:

  • развивать геометрическое мышление, интерес к предмету, познавательную и творческую деятельность учащихся, математическую речь, умение самостоятельно добывать знания.

Воспитательные:

  • развивать личностные качества учащихся, таких как целеустремленность, настойчивость, аккуратность, умение работать в коллективе.

Оборудование: мультимедийный проектор, треугольники из цветной бумаги, УМК «Живая математика», компьютер, экран.

Подготовительный этап: учитель дает задание ученику подготовить историческую справку о теореме «Сумма углов треугольника».

Тип урока : изучение нового материала.

Ход урока

I. Организационный момент

Приветствие. Психологический настрой учащихся на работу.

II. Разминка

С геометрической фигурой “треугольник” мы познакомились на предыдущих уроках. Давайте повторим, что нам известно о треугольнике?

Учащиеся работают по группам. Им предоставлена возможность общаться друг с другом, каждому самостоятельно строить процесс познания.

Что получилось? Каждая группа высказывает свои предложения, учитель записывает их на доске. Проводится обсуждение результатов:

Рисунок 1

III. Формулируем задачу урока

Итак, о треугольнике мы знаем уже достаточно много. Но не все. У каждого из вас на парте есть треугольники и транспортиры. Как вы думаете, какую задачу мы можем сформулировать?

Ученики формулируют задачу урока - найти сумму углов треугольника.

IV. Объяснение нового материала

Практическая часть (способствует актуализации знаний и навыков самопознания).Проведите измерения углов с помощью транспортира и найдите их сумму. Результаты запишите в тетрадь (заслушать полученные ответы). Выясняем, что сумма углов у всех получилась разная (так может получиться, потому что неточно приложили транспортир, небрежно выполнили подсчет и т.д.).

Выполните перегибания по пунктирным линиям и узнайте, чему еще равна сумма углов треугольника:

а)
Рисунок 2

б)
Рисунок 3

в)
Рисунок 4

г)
Рисунок 5

д)
Рисунок 6

После выполнения практической работы ученики формулируют ответ: Сумма углов треугольника равна градусной мере развернутого угла, т. е. 180°.

Учитель: В математике практическая работа дает возможность лишь сделать какое-то утверждение, но его нужно доказать. Утверждение, справедливость которого устанавливается путем доказательства, называется теоремой. Какую теорему мы можем сформулировать и доказать?

Ученики: Сумма углов треугольника равна 180 градусов.

Историческая справка: Свойство суммы углов треугольника было установлено еще в Древнем Египте. Доказательство, изложенное в современных учебниках, содержится в комментариях Прокла к «Началам» Евклида. Прокл утверждает, что это доказательство (рис. 8) было открыто еще пифагорейцами (5 в. до н. э.). В первой книге «Начал» Евклид излагает другое доказательство теоремы о сумме углов треугольника, которое легко понять при помощи чертежа (рис. 7):


Рисунок 7


Рисунок 8

Чертежи высвечиваются на экране через проектор.

Учитель предлагает с помощью чертежей доказать теорему.

Затем доказательство проводится с применением УМК «Живая математика» . Учитель на компьютере проецирует доказательство теоремы.

Теорема о сумме углов треугольника: «Сумма углов треугольника равна 180°»


Рисунок 9

Доказательство:

а)

Рисунок 10

б)

Рисунок 11

в)

Рисунок 12

Учащиеся в тетради делает краткую запись доказательства теоремы:

Теорема: Сумма углов треугольника равна 180°.


Рисунок 13

Дано: Δ АВС

Доказать: А + В + С = 180°.

Доказательство:

Что требовалось доказать.

V. Физ. минутка.

VI. Объяснение нового материала (продолжение)

Следствие из теоремы о сумме углов треугольника выводится учащимися самостоятельно, это способствует развитию умения формулировать собственную точку зрения, высказывать и аргументировать ее:

В любом треугольнике либо все углы острые, либо два острых угла, а третий тупой или прямой .

Если в треугольнике все углы острые, то он называется остроугольным .

Если один из углов треугольника тупой, то он называется тупоугольным .

Если один из углов треугольника прямой, то он называется прямоугольным .

Теорема о сумме углов треугольника позволяет классифицировать треугольники не только по сторонам, но и по углам. (По ходу введения видов треугольников учащимися заполняется таблица)

Таблица 1

Вид треугольника Равнобедренный Равносторонний Разносторонний
Прямоугольный
Тупоугольный
Остроугольный

VII. Закрепление изученного материала.

  1. Решить задачи устно:

(Чертежи высвечиваются на экране через проектор)

Треугольник. Остроугольный, тупоугольный и прямоугольный треугольник.

Катеты и гипотенуза. Равнобедренный и равносторонний треугольник.

Сумма углов треугольника.

Внешний угол треугольника. Признаки равенства треугольников.

Замечательные линии и точки в треугольнике: высоты, медианы,

биссектрисы,срединны e перпендикуляры, ортоцентр,

центр тяжести, центр описанного круга, центр вписанного круга.

Теорема Пифагора. Соотношение сторон в произвольномтреугольнике.

Треугольник – это многоугольник с тремя сторонами (или тремя углами). Стороны треугольника обозначаются часто малыми буквами, которые соответствуют заглавным буквам, обозначающим противоположные вершины.

Если все три угла острые (рис.20 ), то это остроугольный треугольник . Если один из углов прямой ( C, рис.21), то это прямоугольный треугольник ; стороны a , b , образующие прямой угол, называются катетами ; сторона c , противоположная прямому углу, называется гипотенузой . Если один из углов тупой ( B, рис.22), то это тупоугольный треугольник.


Треугольник ABC (рис.23) - равнобедренный , если две его стороны равны (a = c ); эти равные стороны называются боковыми , третья сторона называется основанием треугольника. Треугольник ABC (рис.24) – равносторонний , если все его стороны равны (a = b = c ). В общем случае (a b c ) имеем неравносторонний треугольник.

Основные свойства треугольников. В любом треугольнике:

1. Против большей стороны лежит больший угол, и наоборот.

2. Против равных сторон лежат равные углы, и наоборот.

В частности, все углы в равностороннем треугольнике равны.

3. Сумма углов треугольника равна 180 º .

Из двух последних свойств следует, что каждый угол в равностороннем

треугольнике равен 60 º.

4. Продолжая одну из сторон треугольника (AC, рис.25), получаем внешний

угол BCD. Внешний угол треугольника равен сумме внутренних углов,

не смежных с ним : BCD = A + B.

5. Любая сторона треугольника меньше суммы двух других сторон и больше

их разности (a < b + c , a > b c ;b < a + c , b > a c ;c < a + b ,c > a b ).

Признаки равенства треугольников.

Треугольники равны, если у них соответственно равны:

a ) две стороны и угол между ними;

b ) два угла и прилегающая к ним сторона;

c ) три стороны.

Признаки равенства прямоугольных треугольников.

Д ва прямоугольных треугольника равны, если выполняется одно из следующих условий:

1) равны их катеты;

2) катет и гипотенуза одного треугольника равны катету и гипотенузе другого;

3) гипотенуза и острый угол одного треугольника равны гипотенузе и острому углу другого;

4) катет и прилежащий острый угол одного треугольника равны катету и прилежащему острому углу другого;

5) катет и противолежащий острый угол одного треугольника равны катету и противолежащему острому углу другого.

Замечательные линии и точки в треугольнике.

Высота треугольника - это перпендикуляр, опущенный из любой вершины на противоположную сторону ( или её продолжение ). Эта сторона называется основанием треугольника . Три высоты треугольника всегда пересекаются в одной точке , называемой ортоцентром треугольника. Ортоцентр остроугольного треугольника (точка O , рис.26) расположен внутри треугольника, а ортоцентр тупоугольного треугольника (точка O , рис.27) снаружи; ортоцентр прямоугольного треугольника совпадает с вершиной прямого угла.

Медиана – это отрезок , соединяющий любую вершину треугольника с серединой противоположной стороны. Три медианы треугольника (AD , BE , CF , рис.28) пересекаются в одной точке O , всегда лежащей внутри треугольника и являющейся его центром тяжести. Эта точка делит каждую медиану в отношении 2:1, считая от вершины.

Биссектриса – это отрезок биссектрисы угла от вершины до точки пересечения с противоположной стороной. Три биссектрисы треугольника (AD , BE , CF , рис.29) пересекаются в одной точке О, всегда лежащей внутри треугольника и являющейся центром вписанного круга (см. раздел «Вписанные и описанные многоугольники»).

Биссектриса делит противоположную сторону на части, пропорциональные прилегающим сторонам ; например, на рис.29 AE : CE = AB : BC .

Срединный перпендикуляр – это перпендикуляр, проведенный из средней точки отрезка (стороны). Три срединных перпендикуляра треугольника АВС (KO , MO , NO , рис.30 ) пересекаются в одной точке О, являющейся центром описанного круга (точки K , M , N – середины сторон треугольника ABC ).

В остроугольном треугольнике эта точка лежит внутри треугольника; в тупоугольном – снаружи; в прямоугольном - в середине гипотенузы. Ортоцентр, центр тяжести, центр описанного и центр вписанного круга совпадают только в равностороннем треугольнике.

Теорема Пифагора. В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

Доказательство теоремы Пифагора с очевидностью следует из рис.31. Рассмотрим прямоугольный треугольник ABC с катетами a , b и гипотенузой c .

Построим квадрат AKMB , используя гипотенузу AB как сторону. Затем продолжим стороны прямоугольного треугольника ABC так, чтобы получить квадрат CDEF , сторона которого равна a + b . Теперь ясно, что площадь квадрата CDEF равна (a + b ) 2 . С другой стороны, эта площадь равна сумме площадей четырёх прямоугольных треугольников и квадрата AKMB , то есть

c 2 + 4 (ab / 2) = c 2 + 2 ab ,

отсюда ,

c 2 + 2 ab = (a + b ) 2 ,

и окончательно имеем:

c 2 = a 2 + b 2 .

Соотношение сторон в произвольном треугольнике.

В общем случае (для произвольного треугольника) имеем:

c 2 = a 2 + b 2 2ab · cos C,

где C – угол между сторонами a и b .