Как сделать левитрон в домашних условиях. Магнитная левитация своими руками по простой схеме

На идею этого урока натолкнул проект краудфандинговой платформы Kickstarter под названием "Air Bonsai", действительно красивый и загадочный, который сделали японцы.

Но любая загадка может быть объяснена, если посмотреть внутрь. Фактически это магнитная левитация, когда есть объект, левитирующий сверху, и электромагнит, контролируемый схемой. Давайте попробуем вместе реализовать этот загадочный проект.

Мы выяснили, что схема устройства на Кикстартере была довольно сложной, без какого-либо микроконтроллера. Не было возможности найти её аналоговую схему. На самом деле, если посмотреть более внимательно, принцип левитации довольно прост. Нужно сделать магнитную деталь, "плавающую" над другой магнитной деталью. Основная дальнейшая работа заключалась в том, чтобы левитирующий магнит не падал.

Было также предположение, что сделать это с Arduino на самом деле намного проще, чем пытаться понять схему японского устройства. На самом деле всё оказалось намного проще.

Магнитная левитация состоит из двух частей: базовой части и плавающей (левитирующей) части.

Основание

Эта часть находится внизу, которая состоит из магнита для создания круглого магнитного поля и электромагнитов для управления этим магнитным полем.

Каждый магнит имеет два полюса: север и юг. Эксперименты показывают, что противоположности притягиваются и одинаковые полюса отталкиваются. Четыре цилиндрических магнита помещаются в квадрат и имеют одинаковую полярность, образуя круглое магнитное поле вверх, чтобы вытолкнуть любой магнит, который имеет один и тот же полюс между ними.

Есть четыре электромагнита вообще, они помещены в квадрат, два симметричных магнита - пара, и их магнитное поле всегда противоположно. Датчик Холла и цепь управляют электромагнитами. Создаем противоположные полюса на электромагнитах током через них.

Плавающая деталь

Деталь включает в себя магнит, плавающий над основанием, который может нести небольшой горшок с растением или другие предметы.

Магнит сверху поднимается магнитным полем нижних магнитов, потому что они с одинаковыми полюсами. Однако, как правило, он склоняется к падению и притягиванию друг к другу. Чтобы предотвратить переворот и падение верхней части магнита, электромагниты создадут магнитные поля, чтобы толкать или тянуть, дабы сбалансировать плавающую часть, благодаря датчику Холла. Электромагниты управляются двумя осями X и Y, в результате чего верхний магнит поддерживается сбалансированным и плавающим.

Контролировать электромагниты нелегко, требуется ПИД-регулятор, который подробно обсуждается на следующем шаге.

Шаг 2: ПИД-регулятор (PID)

Из Википедии: "Пропорционально-интегрально-дифференцирующий (ПИД) регулятор - устройство в управляющем контуре с обратной связью. Используется в системах автоматического управления для формирования управляющего сигнала с целью получения необходимых точности и качества переходного процесса. ПИД-регулятор формирует управляющий сигнал, являющийся суммой трёх слагаемых, первое из которых пропорционально разности входного сигнала и сигнала обратной связи (сигнал рассогласования), второе - интеграл сигнала рассогласования, третье - производная сигнала рассогласования."

В простом понимании: «ПИД-регулятор вычисляет значение «ошибки» как разность между измеренным [Входом] и желаемой установкой. Контроллер пытается свести к минимуму ошибку, отрегулировав [выход]».

Итак, вы указываете PID, что измерить (Вход), какое значение вы хотите и переменную, которая поможет иметь это значение на выходе. Далее ПИД-регулятор настраивает выходной сигнал, чтобы сделать вход равным установке.

Для примера : в автомобиле у нас три значения (Вход, Установка, выход) будут - скорость, желаемая скорость и угол педали газа, соответственно.

В данном проекте:

  1. Вход представляет собой текущее значение в реальном времени от датчика холла, которое обновляется непрерывно, поскольку положение плавающего магнита будет меняться в реальном времени.
  2. Заданное значение - это значение от датчика холла, которое измеряется, когда плавающий магнит находится в положении баланса, в центре основания магнитов. Этот индекс фиксирован и со временем не изменяется.
  3. Выходной сигнал - скорость для управления электромагнитами.

Стоит поблагодарить сообщество любителей Arduino, которое написало PID-библиотеку и которая очень проста в использовании. Дополнительная информация об Arduino PID есть на официальном сайте Arduino . Нам нужно использовать пару ПИД-регуляторов под Arduino, один для оси X и другой для оси Y.

Шаг 3: Комплектующие

Список комплектующих для урока получается приличным. Ниже приведен список компонентов, которые вы должны купить для этого проекта, убедитесь, что у вас есть все перед запуском. Некоторые из компонентов очень популярны, и, вероятно, вы найдете их на своем собственном складе или дома.


Шаг 4: Инструменты

Вот список инструментов, наиболее часто используемых:

  • Паяльник
  • Ручная пила
  • Мультиметр
  • Дрель
  • Осциллограф (по желанию, можете использовать мультиметр)
  • Настольное сверло
  • Горячий клей
  • Плоскогубцы

Шаг 5: LM324 Op-amp, L298N драйвер и SS495a

LM324 Op-amp

Операционные усилители (op-amp) являются одними из наиболее важных, широко используемых и универсальных схем, используемых сегодня.

Мы используем операционный усилитель для усиления сигнала от датчика Холла, цель которого - увеличить чувствительность, чтобы ардуино легко распознало изменение магнитного поля. Изменение нескольких мВ на выходе датчика холла, после прохождения усилителя может измениться на несколько сотен единиц в Arduino. Это необходимо для обеспечения плавного и стабильного функционирования ПИД-регулятора.

Обычным операционным усилителем, который мы выбрали, является LM324, это дешево, и вы можете купить его в любом магазине электроники. LM324 имеет 4 внутренних усилителя, которые позволяют гибко его использовать, однако в этом проекте нужны только два усилителя: один для оси X, а другой для оси Y.

Модуль L298N

Двойной H-мост L298N обычно используется для управления скоростью и направлением двух двигателей постоянного тока или с легкостью управляет одним биполярным шаговым двигателем. L298N может использоваться с двигателями с напряжением от 5 до 35 В постоянного тока.

Существует также встроенный регулятор 5V, поэтому, если напряжение питания до 12 В, вы также можете подключить источник питания 5 В от платы.

В этом проекте использован L298N для управления двумя парами катушек электромагнита и использован выход 5 В для питания Arduino и датчика холла.

Распиновка модулей:

  • Out 2: пара электромагнитов X
  • Out 3: пара электромагнитов Y
  • Входное питание: вход постоянного тока 12 В
  • GND: Земля
  • Выход 5v: 5v для датчиков Arduino и холла
  • EnA: Включает сигнал PWM для выхода 2
  • In1: Включить для выхода 2
  • In2: Enable for Out 2
  • In3: Включить для выхода 3
  • In4: Включить для выхода 3
  • EnB: Включает PWM-сигнал для Out3

Подключение к Arduino: нам нужно удалить 2 перемычки в контактах EnA и EnB, затем подключить 6 контактов In1, In2, In3, In4, EnA, EnB к Arduino.

SS495a Датчик Холла

SS495a - это линейный датчик Холла с аналоговым выходом. Обратите внимание на разницу между аналоговым выходом и цифровым выходом, вы не можете использовать датчик с цифровым выходом в этом проекте, он имеет только два состояния 1 или 0, поэтому вы не можете измерить выход магнитных полей.

Аналоговый датчик приведет к диапазону напряжений от 250 до Vcc, который вы можете прочитать с помощью аналогового входа Arduino. Для измерения магнитного поля в обеих осях X и Y требуются два датчика холла.

Шаг 6: Неодимовые магниты NdFeB (неодим-железо-бор)

Из Википедии: "Неодим - химический элемент, редкоземельный металл серебристо-белого цвета с золотистым оттенком. Относится к группе лантаноидов. Легко окисляется на воздухе. Открыт в 1885 году австрийским химиком Карлом Ауэром фон Вельсбахом. Используется как компонент сплавов с алюминием и магнием для самолёто- и ракетостроения."

Неодим - это металл, который является ферромагнитным (в частности, он показывает антиферромагнитные свойства), что означает, что подобно железу его можно намагнитить, чтобы он стал магнитом. Но его температура Кюри составляет 19К (-254 ° С), поэтому в чистом виде его магнетизм проявляется только при чрезвычайно низких температурах. Однако соединения неодима с переходными металлами, такими как железо, могут иметь температуры Кюри значительно выше комнатной температуры, и они используются для изготовления неодимовых магнитов.

Сильный - это слово, которое используют для описания неодимового магнита. Вы не можете использовать ферритовые магниты, потому что их магнетизм слишком слаб. Неодимовые магниты намного дороже ферритовых магнитов. Маленькие магниты используются для основы, большие магниты для плавающей/левитирующей части.

Внимание ! Вам нужно быть осторожным при использовании неодимовых магнитов, так как их сильный магнетизм может навредить вам, или они могут сломать данные вашего жесткого диска или других электронных устройств, на которые влияют магнитные поля.

Совет ! Вы можете отделить два магнита, потянув их в горизонтальное положение, вы не сможете отделить их в противоположном направлении, потому что их магнитное поле слишком сильное. Они также очень хрупкие и легко ломаются.

Шаг 7: Готовим основание

Использовали небольшой терракотовый горшок, который обычно используется для выращивания суккулента или кактуса. Вы также можете использовать керамический горшок или деревянный горшок, если они подходят. Используйте сверло диаметром 8 мм, чтобы создать отверстие в нижней части горшка, которое используется для удерживания гнезда постоянного тока.

Шаг 8: 3D-печать плавающей части

Если у вас есть 3D-принтер - здорово. У вас есть возможность сделать все с помощью него. Если принтера нет - не отчаивайтесь, т.к. вы можете использовать дешевую услугу 3D-печати, которая сейчас очень популярна.

Для лазерной резки файлы также в архиве выше - файл AcrylicLaserCut.dwg (это autocad). Акриловая деталь используется для поддержки магнитов и электромагнитов, остальные - для покрытия поверхности терракотового горшка.

Шаг 9: Подготовка SS495a модуля датчика Холла

Вырежьте макет PCB на две части, одну часть, чтобы прикрепить датчик холла, а другой - к цепи LM324. Прикрепите два магнитных датчика перпендикулярно печатной плате. Используйте тонкие провода для соединения двух штырей датчиков VCC вместе, сделайте то же самое с контактами GND. Выходные контакты отдельно.

Шаг 10: Цепь Op-amp

Припаяйте гнездо и резисторы к печатной плате, следуя схеме, обратив внимание на то, чтобы поместить два потенциометра в одном направлении для более легкой калибровки позже. Присоедините LM324 к гнезду, затем подключите два выхода модуля датчиков холла к цепи op-amp.

Два выходных провода LM324 подключите к Arduino. Вход 12 В с входом 12 В модуля L298N, выход 5 В модуля L298N к 5V потенциометра.

Шаг 11: Сборка электромагнитов

Соберите электромагниты на акриловый лист, они закреплены в четырех отверстиях вблизи центра. Затяните винты, чтобы избежать движения. Поскольку электромагниты симметричны по центру, они всегда находятся на полюсах напротив, так что провода на внутренней стороне электромагнитов соединены вместе, а провода на внешней стороне электромагнитов подключены к L298N.

Протяните провода под акриловым листом через соседние отверстия, чтобы подключиться к L298N. Медный провод покрыт изолированным слоем, поэтому вы должны удалить его ножом, прежде чем вы сможете припаять их вместе.

Шаг 12: Сенсорный модуль и магниты

Используйте горячий клей для фиксации модуля датчика между электромагнитами, обратите внимание, что каждый датчик должен быть квадратным с двумя электромагнитами, один на передней и другой на задней панели. Попробуйте выполнить калибровку двух датчиков как можно более централизованно, чтобы они не перекрывались, что сделает датчик наиболее эффективным.

Следующий шаг - собрать магниты на акриловой основе. Объединяя два магнита D15*4 мм и магнит D15*3 мм вместе, чтобы сформировать цилиндр, это приведет к тому, что магниты и электромагниты будут иметь одинаковую высоту. Соберите магниты между парами электромагнитов, обратите внимание, что полюса восходящих магнитов должны быть одинаковыми.

Шаг 13: Разъем питания постоянного тока и выход L298N 5V

Припаяйте гнездо питания постоянного тока двумя проводами и используйте термоусадочную трубку. Подключенный разъем питания постоянного тока к входу модуля L298N, его выход 5 В будет подавать питание на Arduino.

Шаг 14: L298N и Arduino

Подключите модуль L298N к Arduino, следуя приведенной выше схеме:

L298N → Ардуино
5V → VCC
GND → GND
EnA → 7
В1 → 6
В2 → 5
В3 → 4
В4 → 3
EnB → 2

Шаг 15: Arduino Pro Mini программер

Поскольку у Arduino pro mini нет USB-порта для последовательного порта, вам необходимо подключить внешний программатор. FTDI Basic будет использоваться для программирования (и питания) Pro Mini.

Коротенькое видео о том, что из себя представляет сделанный левитрон:

www.youtube.com/watch?feature=player_embedded&v=vypjmqq9...

Если кто-то не побоится сделать такую же интересную штуку, то вот вам подробная инструкция:

Немного теории

Начнем, пожалуй, с механической схемы платформенного левитрона, сложившейся в моем понимании. Магнит, который парит над платформой, я буду здесь для краткости называть словом «фишка».
Эскиз платформы левитрона (сверху) изображен на рис. 1.

На рис. 2 – силовая схема вертикального разреза по центральной оси платформы (как я ее себе представляю) в состоянии покоя и без тока в катушках. Все хорошо, кроме того, что состояние покоя в такой системе нестабильно. Фишка стремится сместиться с вертикальной оси системы и с силой шлепнуться на один из магнитов. При «ощупывании» фишкой пространства над магнитами ощущается силовой «горб» над центром платформы с вершиной, лежащей на центральной оси.

mg – вес фишки,
F1 и F2 – силы взаимодействия фишки с магнитами платформы,
Fmag – суммарное воздействие, уравновешивающее вес фишки,
ДХ – датчики Холла.

На рис. 3. изображено взаимодействие фишки с катушками (опять же, по моему понятию), а остальные силы – опущены.

Из рисунка 3 видно, что цель управления катушками – создать горизонтальную силу Fss, направленную всегда к оси равновесия при возникновении смещения Х . Для этого достаточно включить катушки так, чтобы одинаковый ток в них создавал магнитное поле противоположного направления. Остался пустяк: измерить смещение фишки от оси (величину Х ) и определить направление этого смещения с помошью датчиков Холла, а потом пропустить в катушках подходящей силы токи.

Простой повтор электронных схем – не в наших традициях, тем более, что:
- нет в наличии двух TDA2030A, а есть TDA1552Q;
- нет датчиков Холла SS496 (доступны примерно по $2 за штуку), а есть датчики, похожие на HW101, по 3 шт даром в каждом двигателе диска CD- или DVD-драйва;
- лень возиться с двуполярным питанием.
Даташиты:
SS496 - http://sccatalog.honeywell.com/pdbdownload/images/ss496.seri...HW101- http://www.alldatasheet.com/datasheet-pdf/pdf/143838/ETC1/HW101A.html

Схема представляет собой два идентичных усилительных канала с дифференциальными входами и мостовыми выходами. На рис. 4 приведена полностью схема только одного канала усиления. Использованы микросхемы LM358 (http://www.ti.com/lit/ds/symlink/lm158-n.pdf) и TDA1552Q (http://www.nxp.com/documents/data_sheet/TDA1552Q_CNV.pdf).

На вход каждого канала подключена пара датчиков Холла так, чтобы подать на усилитель разностный сигнал. Выходы датчиков включены встречно. Это значит, что, когда пара датчиков находится в магнитном поле с одинаковой напряженностью, с нее на вход усилителя поступает нулевое разностное напряжение.
Балансировочные резисторы R10 взяты многооборотные, старые, советские.
В попытках выжать из усилителя достаточно высокий коэффициент усиления, я получил банальное самовозбуждение, предположительно, из-за бардака на монтажной плате. Вместо «уборки» в схему введены частотнозависимые RС-цепочки R15C2; они не обязательны. Если все же пришлось их установить, то сопротивление R15 нужно подобрать наибольшим, при котором самовозбуждение гаснет.
Питание всего устройства - адаптер (импульсный) на 12В 1,2А, перенастроенный на 15В. Энергопотребление в нормальном состоянии (с выключенным вентилятором) в итоге оказалось вполне скромным: 210-220 мА.

Конструкция
В качестве корпуса выбран кожух дисковода 3,5”, что приблизительно соответствует габаритам прототипов. Для горизонтирования платформы
ножки сделаны из винтов М3.
В верхней части корпуса вырезано фигурное отверстие, хорошо видимое на рис.5. Впоследствии оно закрыто декоративной зеркальной пластиной из хромированной латуни, закрепленной винтиками от винчестеров.

1 – места установки магнитов (снизу) и индикаторов баланса (опционально)
2 – «полюсные наконечники» катушек
3 – датчики Холла
4 – светодиоды подсветки (опционально)

Датчики Холла расположены в отверстиях стеклотекстолитового основания платформы и распаяны на разогнутых ножках разъемов (не знаю типа). Разъемы выглядели как на рис.6.

Датчики выпаяны из двигателей CD- или DVD-привода. Там они расположены под краем ротора и хорошо видны на рис.7. На один канал нужно брать пару датчиков из одного двигателя – так они будут наиболее одинаковыми. Выпаянные датчики – на рис.8.

Для катушек были куплены пластмассовые шпули для швейных машинок, но на них оказалось мало места для обмотки. Тогда от шпуль были отрезаны щечки и приклеены на отрезки тонкостенной латунной трубки наружным диаметром 6мм и длиной 14мм. Трубка раньше была сегментом телескопической стержневой антенны. На четырех таких каркасах проводом 0,3 мм намотаны обмотки «почти послойно» (без фанатизма!) до заполнения. Сопротивление выровнено на 13 Ом.

Магниты – прямоугольные 20х10х5 мм и дисковые диаметром 25 и 30 мм толщиной 4 мм (рис.9) – пришлось все-таки купить… Прямоугольные магниты установлены под основанием платформы, а из дисковых сделаны фишки.

Вид устройства снизу и сзади (вверх дном) – на рис. 10 и 11 (легенда одна на оба рисунка). Бардак, конечно, живописный…
Микросхема U2 TDA1552Q (3) размещена на теплоотводе (9), который раньше работал на видеокарте. Сам радиатор закреплен винтами на отогнутых частях верхней крышки корпуса. На радиаторе (9) закреплены также гнездо питания (1), контрольные гнезда (2) и узел терморегулирования (5).
Кусок стеклотекстолита, который раньше был клавиатурой, служит основанием платформы. Катушки (7) закреплены на основании винтами М4 и гайками. На нем же с помощью хомутов и саморезов укреплены магниты (6).
Контрольные гнезда (2) сделаны из компьютерного разъема питания и закреплены сзади устройства вблизи балансировочных резисторов (10) так, что легко доступны без разборки. Подключены гнезда, естественно, к выходам обоих каналов усилителя.
Схема предусилителя и его стабилизатора питания, включая балансировочные резисторы (10), смонтирована на макетной плате и в результате наладки превратилась в живописный свинарничек, от макрофотографирования которого пришлось воздержаться.

1 – крепление гнезда питания
2 – контрольные гнезда
3 – TDA1552Q
4 – выключатель питания
5 – узел терморегулирования
6 – магниты под хомутиками
7 – катушки
8 – магнитные шунты
9 – теплоотвод
10 – балансировочные резисторы

Наладка

Выставление нулей на выходах обоих каналов при каждом отладочном включении – обязательно. Можно без фанатизма: +–20 мВ – вполне приемлемая точность. Возможно некоторое взаимовлияние между каналами, так что при значительном начальном отклонении (больше 1-1.5 вольт по выходу канала) выставление нулей лучше сделать дважды. Стоит помнить, что при железном корпусе баланс разобранного и собранного устройства – это две большие разницы.

Проверка фазировки каналов

Фишку нужно взять в руку и поместить над центром платформы включенного левитрона на высоте примерно 10-12мм. Каналы проверяются поочередно и раздельно. При смещении фишки рукой вдоль линии, соединяющей противоположные от центра датчики, рука должна чувствовать заметное сопротивление, создаваемое магнитным полем катушек. Если сопротивления не чувствуется, а руку с фишкой «сносит» от оси, нужно поменять местами провода с выхода проверяемого канала.

Настройка положения парящей фишки

На видеороликах о самодельных платформенных левитронах нередко можно видеть, что фишка парит в наклонном положении, даже если сделана на базе дисковых магнитов, то есть, достаточно хорошо симметрирована. Не обошлось без перекоса и в описываемой конструкции. Возможно, в этом виноват металлический корпус…
Первая мысль: сместить вниз магниты с той стороны, где фишку излишне «подпирает».
Вторая мысль: сместить дальше от центра магниты с той стороны, где фишку излишне «подпирает».
Третья мысль: если магниты смещать, то магнитной ось системы постоянных магнитов платформы перекосится относительно магнитной оси системы катушек, из-за чего поведение фишки станет непредсказуемым (особенно при разном ее весе).
Четвертая мысль: сделать сильнее магниты с той стороны, куда наклонена фишка – была отброшена как несбыточная, потому что широкого ассортимента магнитов для подгонки негде было взять.
Пятая мысль: сделать слабее магниты с той стороны, где фишку излишне «подпирает» – оказалась удачной. Более того, достаточно простой в реализации. Магнит, как источник магнитного поля, можно шунтировать, то есть, закоротить часть магнитного потока, так что в окружающем пространстве магнитное поле станет немного слабее. В качестве магнитных шунтов были применены маленькие ферритовые кольца (10х6х3, 8х4х2 и т.д.), бесплатно выковырянные из дохлых ламп-экономок (8 на рис.10). Эти кольца нужно просто примагнитить к слишком сильному магниту (или двум-трем) с той их стороны, что дальше от центра платформы. Оказалось, что подбирая количество и размеры шунтов для каждого «слишком сильного» магнита, можно достаточно точно отгоризонтировать положение парящей симметричной фишки. Не забывайте выполнить электрическую балансировку после каждого изменения в магнитной системе!

Опции

К опциям относятся: индикаторы разбаланса усилителя, узел терморегулирования, подсветка и регулируемые ножки платформы.
Индикаторы разбаланса усилителя – две пары светодиодов, расположенные на тех же радиусах, что и датчики, в толще стеклотекстолитового основания платформы (1 на рис. 5). Светодиоды, очень маленькие и плоские, раньше работали в каком-то модеме, но подойдут и от старой мобилки (в SMD исполнении). Светодиоды утоплены в отверстиях, так как фишка, срываясь из центра, шлепается на ближайший магнит и вполне способна разрушить светодиод.
Схема индикатора для одного канала – на рис. 12. Светодиоды должны быть с рабочим напряжением 1,1-1,2 В, т.е. простенькие красные, оранжевые, желтые. При более высоких напряжениях LED-ов (2,9-3,3 В для сверхъярких) следует пересчитать количество диодов в цепочке D3-D6 для сведения к минимуму «мертвой зоны» – минимального напряжения на выходе канала, при котором ни один из светодиодов не светится.

Я расположил индикаторы так, чтобы светился тот, в сторону которого фишка смещена от центра. Индикаторы помогают легко повесить фишку над левитроном, а также горизонтировать платформу. В нормальном состоянии все они погашены.

Схема узла терморегулирования – на рис. 13. Его назначение – не дать оконечному усилителю перегреться. На выходе термоузла включен вентилятор 50х50 мм 12В 0,13А от компьютера.

В схеме термоузла легко узнать немного измененный триггер Шмитта. Вместо первого транзистора использована микросхема TL431. Тип транзистора Q1 указан условно – я воткнул первый попавшийся NPN, способный выдержать рабочий ток вентилятора. В качестве термодатчика использован терморезистор, найденный на старой материнской плате в процессорном сокете. Термодатчик приклеен на радиатор оконечного усилителя. Подбором резистора R1 можно отрегулировать термоузел на срабатывание при температуре 50-60С. Резистор R5 совместно с коллекторным током Q1 определяет величину гистерезиса схемы относительно напряжения на управляющем входе U1.
В схеме на рис. 13 резистор R7 введен для снижения напряжения на вентиляторе и, соответственно, шума от него.
На рис. 14 видно, как вентилятор врезан в нижнюю крышку корпуса.

Другой способ применения термоузла – подключение к управляющему выводу MUTE микросхемы оконечного усилителя (рис. 15). Величина указанного на схеме номинала R5 предполагает подключение MUTE (вывода 11 микросхемы U2 по рис. 4) к питанию через резистор 1кОм (НЕ напрямую, как в даташите!). Вентилятор в таком случае не нужен. Правда, при подаче сигнала MUTE на усилитель фишка падает, и после снятия сигнала MUTE сама (почему-то?) не взлетает.

Подсветка – 4 ярких светодиода диаметром 3мм, расположенные наклонно к центру в отверстиях основания платформы и декоративной пластины в тех местах, куда фишка не падает. Они включены последовательно и через резистор 150 Ом – к цепи общего питания устройства 15В.

Заключение

Грузоподъемность

Чтоб «добить» тему, сняты «грузовые характеристики» левитрона с фишками 25 и 30 мм диаметром. Грузовыми характеристиками я тут назвал зависимость высоты парения фишки над платформой (от декоративной пластины) от суммарного веса фишки.
Для фишки с магнитом 25 мм и общим весом 19г максимальная высота составила 16мм, а минимальная – 8 мм при весе 38г. Между этими точками характеристика практически линейная. Для фишки с магнитом 30 мм грузовая характеристика оказалась между точками 16 мм при 24г и 8 мм при 48г.
С высоты ниже 8 мм от платформы фишка падает, притягиваясь к железным сердечникам катушек.

НЕ делай, как я!

Во-первых, не стоит экономить на датчиках. «Голые» датчики Холла, вынутые попарно для каждого канала из двух двигателей (то есть, практически одинаковые!) – все равно проявляют свой безобразно большой температурный коэффициент сопротивления. Даже при одинаковых цепях питания и встречно-разностном включении выходов датчиков, можно получить заметное смещение нуля на выходе канала при изменении температуры. Интегральные датчики SS496 (SS495) имеют не только встроенный усилитель, но и термостабилизацию. Внутренний усилитель датчиков позволит сделать существенно выше общий коэффициент усиления каналов, да и схема их питания выходит попроще.
Во-вторых, следует, по возможности, воздержаться от размещения левитрона в железном корпусе.
В-третьих, двуполярное питание все-таки предпочтительнее, потому что управление коэффициентом усиления и юстировкой нулей получаются проще.

Спасибо за внимание!

Левитроном, как известно, называют волчок, вращающийся в воздухе над коробкой, в которой действует источник магнитного поля. Изготовить левитрон можно из популярного датчика холла.

Что такое левитрон

ВНИМАНИЕ! Найден совершенно простой способ сократить расход топлива! Не верите? Автомеханик с 15-летним стажем тоже не верил, пока не попробовал. А теперь он экономит на бензине 35 000 рублей в год!

Левитрон – это игрушка. Ее нет никакого смысла покупать, если знать варианты изготовления самодельного устройства. Ничего сложного в конструкции такого левитрона не будет, если имеется обычный датчик холла, например, купленный для автомобильного трамблера, и оставленный впрок.

Следует знать, что эффект левитации наблюдается всегда в достаточно узкой зоне. Такие реалии несколько ограничивают свободу действий умельцев, однако при приложении терпения и времени, можно всегда настроить левитрон качественно и эффективно. Он практически не будет падать или скакать.

Левитрон из датчика холла

Левитрон на датчик холла и идея его изготовления проста, как и все гениальное. Благодаря силе магнитного поля в воздух поднимается кусок любого материала с электромагнитными свойствами.

Чтобы создался эффект «зависания», парения в воздухе, подключение осуществляется с большой частотой. Другими словами, магнитное поле, как бы, поднимает и бросает материал.

Схема устройства чересчур проста, и даже школьник, не просидевший уроки физики зря, сможет все самостоятельно соорудить.

  1. Нужен светодиод (цвет его подбирается в зависимости от индивидуальных предпочтений).
  2. Транзисторы RFZ 44N (хотя подойдет любой полевик, близкий к этим параметрам).
  3. Диод 1N 4007.
  4. Резисторы на 1 кОм и 330 Ом.
  5. Собственно, сам датчик холла (А3144 или другой).
  6. Медный намоточный провод размером 0,3-0,4 мм (около 20 метров будет достаточно).
  7. Неодимовый магнитик в виде таблетки 5х1 мм.
  8. 5-вольтный зарядочник, предназначенный для мобильника.

Теперь подробно о том, как проводится сборка:

  • Делается каркас для электромагнита точно с такими же параметрами, как на фото. 6 мм – диаметр, около 23 мм – длина намотки, 25 мм – диаметр щечек с запасом. Изготавливается каркас из картонки и обычного тетрадного листа, с использованием суперклея.

  • Конец медного провода фиксируется на катушке, а затем проводится наматывание (примерно 550 витков). Неважно при этом в какую сторону наматывать. Другой конец провода тоже закрепляется, катушка пока откладывается в сторону.
  • Паяем все по схеме.

  • Датчик холла припаивается на проводки, а затем ставится на катушку. Надо вдеть его внутрь катушки, зафиксировать подручными средствами.

Внимание. Чувствительная зона датчика (определить ее можно по документации к датчику холла) должна смотреть параллельно земле. Поэтому, перед тем как вдеть датчик в катушку, рекомендуется немного согнуть это место.

  • Катушка подвешивается, на нее подается питание через спаянную ранее плату. Катушка фиксируется посредством штатива.

Теперь можно проверить, как работает левитрон. Можно подвести к катушке снизу любой наэлектризованный материал. Он будет либо притягиваться катушкой, либо отталкиваться, в зависимости от полярности. Но нам нужно, чтобы материал зависал в воздухе, парил. Так оно и будет, если форма материала не слишком мала по отношению к катушке.

Примечание. Если магнит в виде таблетки маленький, то он будет левитировать не слишком эффектно. Может падать. Чтобы исключить огрехи в работе, надо сместить центр тяжести материала к низу – в качестве груза подойдет обычный кусок бумажки.

Что касается светодиода, то его можно и не ставить. С другой стороны, если хочется большего эффекта, можно организовать шоу с подсветкой.

Самодельный левитрон в классическом исполнении без датчика

Как видим, благодаря наличию датчика холла удалось изготовить вполне эффектную игрушку. Однако это вовсе не означает, что без датчика не обходится. Напротив, самодельный левитрон в классическом исполнении, это лишь большой магнит от динамика (диаметром 13-15 см) и маленький кольцевой магнит для волчка (2-3 см в диаметре), без использования датчика.

Ось волчка делается, как правило, из старой ручки или карандаша. Главное – стержень подбирается так, чтобы плотно заходил по центру кольцевого магнита. Лишняя часть ручки после этого срезается (примерно 10 см в длину вместе с закрепленным магнитом для волчка, то что надо).

Классическая схема изготовления левитрона подразумевает также наличие десятка различных шайб, вырезанных из плотной бумаги. Для чего они понадобятся? Если в вышеописанном случае тоже использовалась бумага, и как мы помним – для смещения центра тяжести вниз или проще, для настройки. То же самое и здесь. Шайбочки буду нужны для идеальной настройки волчка (при необходимости сажаются после кольцевого магнита на стержень).

Внимание. Чтобы самодельный волчок идеально левитировал, помимо настройки шайбочками, нужно не ошибиться с полярностью. Другими словами, установить кольцевой магнит соосно большому магниту.

Но и это еще не все. Как в первом случае (с использованием датчика холла), так и во втором, надо добиться идеальной ровности источника притяжения. Говоря иначе, поставить большой магнит на идеально ровную поверхность. Чтобы добиться этого, применяются деревянные подставки различной толщины. Если магнит сидит не ровно, подставки ставятся с одной стороны или с нескольких, таким образом, настраивается ровность.

Платформенные левитроны

Отличается платформенная схема левитрона, как правило, наличием не одного, а нескольких магнитов-источников. Парящий в воздухе материал или волчок будет стремиться в этом случае упасть на один из магнитов, сместившись с вертикальной оси. Чтобы этого избежать, надо суметь скорректировать центральную зону притяжения, и сделать это идеально точно.

И тут на помощь приходят те самые катушки, с вдетым внутрь датчиком холла. Пусть таких катушек будет две, и расположить их следует ровно по середине платформы, между магнитами. На схеме это будет выглядеть вот так (1 и 2 — магниты).

Из схемы становится понятно, что целью управления катушками является создание горизонтальной силы, центра притяжения. Сила эта формально названа Fss, и направлена она к оси равновесия при возникновении смещения, указанного на схеме, как Х.

Если подключить катушки так, чтобы импульс создавал зону с обратной полярностью, то можно решить вопрос со смещением. Это подтвердит любой физик.

В качестве корпуса для конструкции платформенного левитрона подбирается любой старый проигрыватель ДВД. Из него снимаются все «внутренности», устанавливаются магниты и катушки, а в целях красоты, верхняя часть закрывается практичной крышкой из тонкого, можно прозрачного материала (пропускающего магнитное поле).

Датчики холла должны выступать через отверстия платформы, должны быть распаяны на разогнутых ножках разъемов.

Что касается магнитов, то это могут быть круглые элементы толщиной в 4 мм. Желательно, чтобы один из магнитов был больше второго по диаметру. Например, 25 и 30 мм.

Существуют и более сложные варианты левитронов, изготовленные по схеме раскручивания волчка, находящегося внутри небольшого глобуса. Эти левитроны также могут строиться с использованием датчиков холла – эффективных составляющих, совершивших целую революцию в автопромышленности и других сферах человеческой деятельности.

Как работает Левитрон?

Теперь, когда вы заинтересовались левитацией, создав или купив свой первый Левитрон, вам осталось только освоить искусство запуска, мы поможем вам в этом, рассмотрев принцип действия. И научим вас искусству запуска Левитрона, расскав о секретах и тонкостях этой технологии.

Овладеть искусством запуска волчка и помещения его в позицию стабильной левитации, вы и окружающие, гарантированно ощутите полное изумление. Сегодня левитация волнует многих людей. Мы получаем многочисленные запросы от клиентов, с вопросами по левитации и объяснения того, как работает левитрон.

Многие экспресс озадаченность, что он работает на всех, часто ссылаясь на теорему, принадлежащую Эрншоу (1,2), как доказательство того, что он не должен работать. Интерес к левитрон имеет всегда кипят среди ученых. в последнее время аналогий левитрон ловушкам для микроскопических частиц (например, электронов, нейтронов) были признаны учеными, работающими в увлекательной области исследований, где материя манипулируют и исследуют, одну такую ​​микроскопическую частицу в то время, . Первый признать аналогию, был доктор Майкл В. Берри из университета Бристоля. Д-р Берри, вдохновленный этим признанием, опубликовал подробное изложение физики функционирования левитрон (в 3). бумага доктора Берри является одним из лучших существующих объяснение того, как работает Левитрон и он любезно приготовил для нас краткую инкапсуляцию основных тем, которые мы представляем ниже. Те, кто желает, чтобы прочитать полную экспозицию следует запросить копию бумаги от доктора Берри.

Что его держит?

"Антигравитация", - это сила, которая отталкивает вершины от основания магнетизм. И верх и тяжелая горбыль внутри базовой коробки намагничиваются, но противоположно. Подумайте основного магнита с его северным полюсом направлен вверх, а сверху, как магнит с его северный полюс направлен вниз (рис.1). Принцип заключается в том, что два одинаковых полюса (например, два Norths) отталкиваются и что два противоположных полюса притягиваются, с силами, которые сильнее, когда полюса ближе. Есть четыре магнитных сил на вершине: на ее северном полюсе, отталкивание с севера в базу и притяжения с юга базу, а также на его южном полюсе, притяжение с севера для базы и отталкивания с юга базы. Из-за способа силы зависят от расстояния, к северо-северо отталкивание доминирует, а верхняя магнитно отталкиваются. Он висит где это вверх отталкивание уравновешивает вниз сила тяжести, то есть в точке равновесия, где суммарная сила равна нулю.

Почему Левитрону нужно вращаться?

Чтобы предотвратить опрокидывание вершины. Помимо обеспечения силы на вершине в целом, магнитное поле базы дает крутящий момент, стремящийся повернуть его ось вращения. Если верхняя не спиннинг, этот магнитный вращающий момент будет перевернуть его. Затем ее южный полюс будет направлена ​​вниз, и сила от основания будет привлекательным, - то есть, в том же направлении, что и силы тяжести - и вершина будет падать. Когда верхний вращается, крутящий момент действует гироскопически и ось не опрокинуть, но вращается вокруг (почти вертикально) направление магнитного поля. Это вращение называется прецессией (рис.2). С Левитроном, ось почти вертикально и прецессии видно, как дрожь, которая получает более произносит как топ замедляется. Эффективность спина в стабилизации магнитно поддерживается вершины, такие как Левитрон был обнаружен Рой М. Harrigan (4).

Почему Левитрон не скользит боком?

Для верхней она остается подвешенной, в одиночку равновесия недостаточно. Равновесие также должна быть стабильной, так что небольшое горизонтальное или вертикальное перемещение производит силой, толкающей вверх назад к точке равновесия. Для Левитрона, стабильности трудно достичь. Это зависит от того факта, что, как вершина перемещается в сторону, в сторону от оси основного магнита, магнитное поле базы, о которой ось волчка прецессировала, слегка отклоняется от вертикали (рис. 2). Если верхний прецессировала о точной вертикали, физика магнитных полей сделало бы равновесие неустойчиво. Поскольку поле настолько близко к вертикали, равновесие устойчиво только в небольшом диапазоне высот - от примерно 1,25 дюйма до 1,75 дюйма выше центра основания. (от 2,5 до 3,0 дюйма для увлечениях "нового Супер Левитрон). Теорема Эрншоу не нарушается поведение Левитрон. Эта теорема утверждает, что никакие статические расположения магнитных (или электрических) зарядов не может быть стабильным, в одиночку или под действием силы тяжести. Это не относится к Левитрон, потому что магнит (в верхней части) крутится и так динамически реагирует на поле от основания.

Почему вес Левитрона важен (и почему он должен быть отрегулирован)?

Вес верхней и силы намагничивания базы и верхний определяют высоту равновесия, где магнетизм уравновешивает силу тяжести. Эта высота должна находиться в стабильном диапазоне. Небольшие изменения температуры изменяет намагниченность базы и сверху. (При повышении температуры, направления атомных магнитов рандомизации и поле ослабевает). Если вес не корректируется, чтобы компенсировать, равновесие будет выходить за пределы диапазона стабильной и вершина будет падать. Так как стабильный диапазон настолько мал, эта регулировка деликатная - самый легкий шайба составляет лишь около 0,3% от веса верхней части.

Почему в конце концов Левитрон падает?

Верхний раскручивает стабилен в диапазоне приблизительно от 20 до 35 оборотов в секунду (RPS). Это совершенно неустойчив выше 35-40 RPS и ниже 18 оборотов в секунду. После того, как вершина прядут и левитировать, это замедляет из-за сопротивления воздуха. Через несколько минут она достигнет нижнего предела устойчивости (18 RPS) и падает. Спин время жизни Левитрон может быть расширен путем помещения его в вакууме. В течение нескольких вакуумных экспериментов, которые были сделаны верхней упала примерно через 30 минут. Почему он делает это не ясно; может быть, при изменении температуры, толкая равновесия из стабильного диапазона; может быть, есть некоторые крошечные остаточные долгосрочной нестабильности, потому что вершина не вращается достаточно быстро; или, возможно, вибрации вакуумного оборудования пробежку поле и постепенно привод оси прецессии от направления магнитного поля. Левитации может быть значительно продлен путем продувки воздуха с соответствующим воздушным зубчатый воротник, расположенных вокруг периферии волчка, с тем, чтобы поддерживать частоту спинов в стабильном диапазоне. В последнее время топ Левитрон хранилась вращающаяся в течение нескольких дней таким образом. Но наиболее успешным средством для продления левитации волчка является новым, электромагнитный импульсный прибор, который может держать верхнюю левитировать в течение многих дней или даже недель.

Как используется принцип Левитрона?

В последние десятилетия, микроскопические частицы изучались захвата их с магнитных и / или электрических полей. Есть несколько видов ловушек. Например, нейтроны могут быть проведены в магнитном поле, создаваемом системой катушек. Нейтроны вращающихся магнитных частиц, поэтому аналогия такой нейтронной ловушки с Левитрон близко.

В некоторых продвинутых магазинах можно увидеть стенды с рекламой, на которых показываются интереснейшие эффекты, когда какая-то вещь с витрины или предмет с изображением бренда левитирует. Иногда добавляется вращение. Но такую установку вполне по силам сделать даже человеку без особого опыта в самоделках. Для этого нужен неодимовый магнит, который можно найти в запчастях от компьютерной техники.

Свойства магнита удивительны. Одно из таких свойств отталкиваться одинаковыми полюсами используется в предметах, которые используются как поезда на магнитной подушке, забавные игрушки или основа для эффектных дизайн-объектов и др. Как сделать левитирующий объект на основе магнитов?

Магнитная левитация на видео

Левитация волчка над пятью точечными неодимовыми магнитами. Magnetic Levitation, magnétismo, magnetic experiment, truco magnética, moto perpetuo, amazing game. Занимательная физика.

Обсуждение

hawk
При вращении магнита присутствует левитация а если обороты магнита уменьшаются падает с орбиты… обоснуй этот эффект. Взаимодействие магнитных полей между магнитами это ясно но какая роль вращения. Можно переменным магнитным полем от катушек удерживать магнит в воздухе также.

pukla777
Просьба проработать тему – маховик генератор. Думаю она будет иметь полезное практичное применение. К тому же, оно у вас было очень давно снято в ролике, но очень мало и без информации.

RussiaPrezident
А что если:
Запустить этот волчок и каком нибудь кубе и создать там Вакуум, по идеи не будет сопротивления воздуха и он будет крутиться практически бесконечно! А если не него ещё и медь правильно накрутить и снимать энергию?

Евгений Петров
Читаю комментарии, удивлен, какая нитка!? Там все как есть магнитный волчок, ему задали мех. энергию и есть постоянное магнитное поле волчка при вращении которого вращается и магнитное поле, но главное как! В магнитах домены упакованы не равно распределено это технически не возможно поэтому сам магнит пассивный не может удержаться на магнитной подушке он уйдет на более сильную сторону где разница вообще мизерная, поэтому вращение поля не дает это сделать.

Вячеслав Субботин
Ещё идея, а что если светить лазером постоянно с одной стороны? Изменится ли время вращения волчка из-за давления света? Если взять сильный лазер, то может быть получится сделать, чтобы волчок вообще не останавливался.

Никто Неизвестный
Старая игрушка… я помню данный волчок и пластину под ним на ферритовых магнитах, на неодиме это уже скучно, причем нижний магнит основания представлял собой одну сплошную плиту, а не пять отдельных магнитов, только он был намагничен хитрым образом…

Алигарх Леопольд
Игорь Белецкий, можно сделать колпак на который будет приземляться волчёк, чтоб его не ловить. Можно ли к нему добавить вращающееся магнитное поле чтоб поддерживать вращение? к примеру если его магнитный стол вращать..

Тимур Аминев
А расскажите пожалуйста как магнитное поле Земли тормозит волчок? В смысле какие моменты сил направленные против вращения возникают и почему.

Александр Васильевич
Если сверху над магнитом (или снизу было бы вообще шикарно!) приделать катушку и подкручивать ею волчок, то получится некое подобие двигателя на магнитном подвесе. Вещь абсолютно бестолковая, но красивая. Крутиться будет пока источник питания не убрать))

Иван Петров
Ну это мы уже видели. Сделай так чтобы магнит левитировал без вращения! (и без опор и жидкого азота конечно).

Высокий эльф
Развод для двоечников, это можно было назвать левитацией, если магнит не надо было раскручивать. Сам магнит, что сверху, будет соскальзывать если ему не придать вращение.

Андрей Соломенников
А что если приделать на платформу огонь, а к гироскопу (Юле) пропеллеры, что бы вращалась пока горит огонь внизу. Не помню как называется двигатель, но суть его – вращение, так сказать, ротора при помощи тепла.

волжанин
Игорь,есть такая идея… У тебя на столе не равномерное магнитное поле,а если и волчок сделать из нескольких магнитиков, а стол раскрутить…Может и волчок не будет обороты терять… Как думаешь?..

Антон Симовских
Игорь Белецкий, разобрались в физике процесса? Почему левитация возможна лишь в динамике? Влияют ли на стабилизацию волчка токи фуко, в нем возникающие?

Простейшая установка с левитирующим объектом на магните


Для этого понадобятся: бокс от СД-дисков, один или два диска, много кольцевых магнитов и супер-клей. Приобрести любой магнит можно в китайском интернет-магазине.

Когда к вам придут ваши друзья в гости, они удивятся эффектной конструкции, которую вы создали сами.