Вакуумная печь: назначение, технические характеристики. Принцип работы индукционных печей

Выплавка в вакуумной индукционной печи позволяет решить несколько проблем производства сложнолегированных сплавов. Во-первых, при плавке в вакууме с помощью раскисления углеродом и повышением температуры удается разрушить окисную плену на поверхности ванны и производить плавку и разливку сплавов с чистым зеркалом. Во-вторых, обеспечивается стабильность химического состава сплавов от плавки к плавке и, следовательно, постоянный уровень механических свойств. Так, например, содержание алюминия и титана можно контролировать с точностью до ±0,12%, в то время, как в открытой плавке - с точностью до 1 %.

В-третьих, после плавки в вакууме значительно повышается степень чистоты сплавов. Так, например, в жаропрочном никелевом сплаве R235 (0,15% С; 15,5% Cr; 5,3% Mo; 10% Fe; 2,0% Ti; 3,0% Al) на никелевой основе по сравнению с плавкой, на воздухе содержание кислорода уменьшилось с 0,017 до 0,0025%, азота с 0,004 до 0,002%, водорода с 0,0006 до 0,00005% . В сплаве Уэспаллой (0,07% С; 0,4% Si; 0,7% Mn; 19% Cr; 14% Со; 4,3% Mo; 3,0% Ti; 1,3% Al; Ni - ост.) содержание кислорода после плавки в вакууме понизилось до 0,0012%; азота до 0,012%, водорода до 0,00025% .

На рис. 113 показано влияние азота на свойства жаропрочного сплава ЖС6К- Как видно из рис. ИЗ, для этого сплава необходимо получать некоторое оптимальное содержание азота. Азот, очевидно, оказывает модифицирующее влияние на структуру сплава. Кислород в жаропрочных сплавах оказывает отрицательное влияние на жаропрочные свойства, что хорошо видно из рис. 114, на котором представлена зависимость времени разрушения сплава Удимет-500 под нагрузкой от концентрации кислорода.


На свойства сплавов Х20Н80 и Х15Н60, выплавленных в ВИП, большое влияние оказывает присадка РЗМ. В вакууме количество РЗМ может быть значительно сокращено. Наиболее высокие результаты получали при легировании сплава церием на 0,10- 0,15% и кремнием на 1,4% или церием на 0,05-0,08% и лантаном на 0,05-0,08%. Благодаря повышению чистоты металла содержание азота составило 0,007%; кислорода 0,001%.

После ВИП живучесть сплава Х20Н80 повысилась с 40 до 70 ч, а за счет дополнительного легирования РЗМ в вакууме с 70 до 150-250 ч (96% всех плавок). Живучесть сплава Х15Н60 менее легированного, чем Х20Н80, превысила 100 ч. Повысились и электротехнические свойства. Так, для сплава Х20Н80 удельное электросопротивление в среднем повысилось с 1,1 до 1,18 Ом мм2/м. При нагреве в вакуумном материале изменение электросопротивления на 3-8% происходит за 200-400 ч, в то время, как в обычном сплаве за 40-60 ч .

По мнению авторов этой работы, положительное влияние применения церия при ВИП заключается в его воздействии на образование сульфидов. Церий способствует удалению сульфидов путем образования прочных тугоплавких сульфидов, всплывающих до кристаллизации или на ее ранней стадии.. В присутствии церия снижается вероятность образования сульфидов других элементов, например титана, если последний содержится в металле. Подобное же воздействие на серу оказывает и магний.

При вакуумной выплавке в индукционной печи жаропрочных сплавов происходит значительное испарение примесей цветных металлов. Этот способ обеспечивает один из наиболее низких уровней содержаний этих примесей по сравнению с другими методами. Так, для высокопрочной стали, по данным Чуприна , содержание примесей цветных металлов в зависимости от способа выплавки характеризуется данными, приведенными в табл. 37.

Таблица 37 СОДЕРЖАНИЕ ПРИМЕСЕЙ ЦВЕТНЫХ МЕТАЛЛОВ В ВЫСОКОПРОЧНОЙ СТАЛИ

плавка на воздухе

С увеличением длительности выдержки жидкого металла в вакууме содержание примесей цветных металлов уменьшается, а механические свойства сплавов возрастают, что видно на рис. 115.

Но простое рафинирование металла от примесей не всегда способствует повышению его свойств.

Так, по данным К. Я. Шпунт, для жаропрочных сплавов, кроме рафинирования в вакууме, большое значение имеет остаточное содержание модифицирующих элементов магния и церия.

В результате выплавки в вакууме значительно повышаются механические свойства жаропрочных сплавов. В качестве примера можно привести улучшение свойств жаропрочного сплава, выплавленного в вакуумной индукционной печи.

Плавка в вакуумной индукционной печи повышает ковкость кобальтовых сплавов, позволяет обрабатывать обычно недефор-мируемые сплавы. Повышаются свойства литых сплавов, прецизионных отливок, таких как лопатки, клапаны, роторные диски турбин, направляющие и других деталей реактивных двигателей.

Плавка в вакууме позволяет повысить механические свойства жаропрочных сплавов благодаря усложнению состава, т. е. введению новых легирующих компонентов, повышением содержания упрочняющих компонентов. При обычной плавке на воздухе увеличение содержания титана, алюминия, молибдена или усложнение состава приводит к снижению жаропрочных свойств.

Разработанные более века назад, индукционные печи прочно входят в наш быт. Это стало возможно благодаря развитию электроники. Взрывной рост мощности контроллеров, выполненных на основе кремниевых полупроводников и появление в широкой продаже транзисторов, способных обеспечивать большие мощности (в несколько киловатт) в последние годы приобрёл характер лавины. Всё это подарило человечеству невероятно большие перспективы в развитии миниатюрных установок, сопоставимых по мощности с промышленными устройствами ближайшего прошлого.

Использование и строение устройства

Применение индукционных печей в домашнем хозяйстве позволяет избежать появления в помещении очагов открытого пламени и является довольно эффективным способом плавления и контролированного нагрева металлов и сплавов. Это происходит благодаря тому, что металл нагревается, раскаляется и расплавляется не под воздействием высокотемпературных горелок, а с помощью пропускания через себя токов большой частоты, стимулирующих активное движение частиц в структуре материала.

Стало возможным появление в быту:

Кроме того, всё большее распространение получают электроиндукционные печки, которые работают не только с токопроводящим материалом. Их устройство немного отличается от обычных индукционных печей, так как в его основе лежит нагрев электрической индукцией материала, который не проводит ток (их ещё называют диэлектриками) между обкладками конденсатора , то есть, его выводами разной полярности. Достигаемые температуры при этом не очень большие (порядка 80−150 градусов Цельсия), поэтому такие установки применяются для плавления пластика или его термической обработки.

Особенности конструкции и принцип работы

Индукционная печь работает на основе образования в ней вихревых электрических токов. Для этого используют состоящую из витков толстого провода катушку индуктивности, к которой подводится источник переменного тока. Именно переменный ток образует постоянно меняющееся в зависимости от текущей частоты магнитное поле. Оно и провоцирует передачу этих токов помещаемому внутрь катушки веществу вместе с большим количеством тепла. Генератором при этом может выступать даже самый обычный сварочный инвертор.

Разделяют два вида индукционных печей:

  1. С магнитопроводом, особенностью которой является расположение индуктора внутри объёма металла, поддающегося плавке.
  2. Без магнитопровода - когда индуктор находится снаружи.

Конструкция с наличием магнитопровода используется, например, в канальных печах. В них используется неразомкнутый металлический (чаще всего - стальной) магнитопровод, внутри которого находятся тигель для плавки и индуктор, образовывающие первичную цепь обмотки. В качестве материала для тигля можно использовать графит, жаропрочную глину или любой другой непроводящий ток материал, обладающий подходящей термостойкостью. В нём размещают металл, который требуется расплавить. Это, как правило, всяческие сплавы цветных металлов, дюралюминий и чугун.

Генератор такой печи должен обеспечивать частоту переменного тока в пределах 400 герц. Возможны и варианты использования вместо генератора обычную электрическую сеть и питать печь с помощью тока с частотой в 50 герц, но в этом случае температура разогрева будет ниже и для более тугоплавких сплавов такая установка не подойдёт.

Тигельные же печи, не имеющие в своей конструкции магнитопровода, получили значительно большее распространение среди энтузиастов. Они используют токи значительно большей частоты для достижения большей плотности поля. Это связано как раз с отсутствием магнитопровода - слишком большой процент энергии поля рассеивается в пространстве. Для противодействия этому необходимо очень тонко настроить печь:

  • Обеспечить равную частоту контура индукционной установки и напряжения от генератора (при использовании инвертора это сделать легче всего).
  • Подобрать диаметр плавильного тигля таким образом, чтобы он был близок с длиной волны полученного излучения магнитного поля.

Таким образом можно минимизировать потери вплоть до 25% от всей мощности. Для достижения же наилучшего результата рекомендуется выставлять дважды, а то и трижды большую частоту источника переменного тока, чем резонансную. В этом случае диффузия металлов, входящих в состав сплава будет максимальной, а его качество - значительно лучше. Если повышать частоту и дальше, можно добиться эффекта выталкивания высокочастотного поля к поверхности изделия и так провести его закалку.

Вакуумные плавильные печи

Такой вид установок сложно назвать бытовыми, но рассмотреть их стоит из-за того, что вакуумная плавка имеет ряд технологических преимуществ по сравнению с другими видами. По своей конструкции она напоминает тигельную, с тем отличием, что сама печь находится в вакуумной камере. Это позволяет добиваться большей чистоты процесса расплавления металла, понизить его окисляемость в процессе обработки и ускорить процесс, добиваясь значительной экономии электроэнергии.

Кроме того, ограниченность и замкнутость пространства способствует избежать выделения в окружающее пространство вредных испарений плавящихся металлов и сохранять чистоту процесса их обработки. Возможность контролировать состав и процесс обработки также является одним из преимуществ печей этого вида.

Канальные индукционные установки

Ещё один вид промышленных печей, имеющих более широкое применение, чем другие. Их можно использовать не только в качестве плавилен, но и как раздатчики подготовленного материала и смесители нескольких видов сырья. Типовые конструкции таких устройств включают:

Малейшее размыкание контура, который образуется жидким металлом, магнитопроводом и катушкой приводит к повышению его собственного сопротивления и мгновенному выбросу всей массы сырья из канала. Для противодействия такому явлению внутри канала оставляют «болото» - небольшую массу металла, которая поддерживается в жидком виде.

Преимущества индуктивных печей канального типа:

  • Невысокая цена установок.
  • Экономичность - для поддержания температуры внутри ванны, которая плохо рассеивает тепло, нужно малое количество электроэнергии.
  • Коэффициент полезного действия индуктора при работе очень высок.

Недостатки:

Основные элементы схемы печи

Для того чтобы собрать установку и выполнять работы на ней, необходимо найти подходящую схему индукционной печи и детали для неё. Для поиска последних очень пригодится наличие одного или нескольких ненужных блоков питания от компьютера, так как большинство деталей можно найти в них. Типовая схема простейшей печи с самодельным инвертором будет включать такие элементы, как:

Инвертор для установки собирается по схеме, предложенной С. В. Кухтецким для лабораторных испытаний. Её легко можно найти в интернете. Мощность инвертора, который питается от напряжения в диапазоне 12−35 вольт будет составлять 6 киловатт, а его рабочая частота - 40−80 килогерц, этого будет более чем достаточно для домашних проектов.

Техника безопасности при работе

Так как работа с индукционной печью подразумевает тесный контакт с расплавленным металлом и токами высокой частоты и силы, стоит озаботиться о качественном заземлении установки и надёжных средствах защиты. При этом одежда должна строго соответствовать всем требованиям:

Не стоит забывать и о хорошей вентилируемости помещения, в котором будут работать. Расплавленный металл выбрасывает в воздух химические соединения, которые совсем неполезны для ваших лёгких.

Вакуумная печь представляет собой герметичное нагревательное устройство, в полости которого создается разрежение с величиной, определяемой технологическим процессом. Вакуумная (от лат. “vacuus” — “пустой”) печь (от православ. “pektь” — “пеку, печь”) предназначена для плавки или нагрева в вакууме материалов высокого качества и стоимости.

В данной статье мы рассмотрим:

  • вакуумные печи сопротивления;
  • вакуумно водородная печь;
  • камерные вакуумные печи;
  • камера вакуумной печи;
  • вакуумные трехкамерные печи;
  • лабораторные вакуумные печи;
  • принцип работы вакуумной печи;
  • вакуумные печи спекания;
  • электрическая вакуумная печь;
  • вега вакуумная печь;
  • нпф вакуумные печи;
  • вакуумно компрессионная печь;
  • вакуумные плавильные печи;
  • вакуумная печь для пайки;
  • вакуумная индукционная плавильная печь;
  • вакуумная печь для отжига;
  • вакуумная муфельная печь;
  • вакуумная индукционная печь;
  • вакуумная печь для термообработки;
  • вакуумно водородная печь;
  • колпаковая водородная печь;
  • печи водородным наполнением;
  • водородная печь для спекания;
  • водородные печи конструкция.

Навигация по разделу:

Интересна история создания вакуумных печей с электронагревом. Русский физик Василий Владимирович Петров (1761 — 1834), проводя эксперименты по получению белого пламени между кусками древесного угля, в 1802 году открыл явление электрической дуги. Создав крупнейшую для своего времени батарею гальванических элементов, Петров ставил опыты по применению электрической дуги для плавки и сварки металлов, тем самым положив начало современной электрометаллургии.

Впервые электропечь с разрежением воздуха изготовил в 1839 году английский инженер Р. Хар. В своей печи, помещенной в колокол с разрежением, изобретатель произвел разложение элементов путем испарения за счет приложения электроэнергии от гальванической батареи.

Первую камерную термическую электропечь запатентовал в 1853 году французский химик Л.-А. Пишон. Но практического применения эта печь, как и предыдущие, не получила из-за недостаточной мощности источников электроэнергии. Прообразом современных сталеплавильных электропечей является предложенная в 1899 году французским металлургом Поль Луи Туссеном Эру (1863 — 1914) плавильная печь с электродами, установленными вертикально. К концу ХХ столетия началось массовое производство вакуумных печей в передовых странах мира.

Рассмотрим устройство типовой вакуумной печи. Ее главный узел — герметичная термокамера, соединенная с вакуумным насосом, обеспечивающим разрежение от 5 до 10 -5 мм ртутного столба. По конструкции различают два типа вакуумных электропечей:

  • в ретортном исполнении, при котором нагреватели размещены снаружи камеры;
  • в камерном исполнении, когда нагреватели установлены внутри камеры.

Принцип работы вакуумной печи состоит в следующем. Перед началом термической обработки в вакууме камера вакуумной печи вместе с заготовками герметично закрывается, а вакуум-насос откачивает из нее воздух до требуемого уровня. Заготовки в огнеупорном тигле с помощью высокочастотного индуктора расплавляются или нагреваются до заданной температуры. После выдержки и завершения технологического процесса камера разгерметизируется, открывается, и термообработанные детали выгружаются. Установка готова к следующему циклу работы.

Вакуумная дуговая печь начала использоваться с развитием атомной энергетики, ракетостроения, космических исследований, когда появилась острая потребность в обработке сверхчистых материалов с особыми физико-механическими свойствами.

Преимущества вакуумных дуговых печей состоят в следующем:

  1. Возможность достижения самых высоких температур до 2000 0 С и больших давлений.
  2. Однородность и высокая плотность слитков благодаря направленной кристаллизации жидкого металла в вакууме.
  3. Возможность безокислительного нагрева заготовок, что значительно уменьшает потери металла на угар.
  4. Получение специальных металлов и сплавов высокой чистоты при отсутствии воздуха.
  5. Отсутствие окисления электродов, нагревательных элементов и внутренних металлоконструкций в печи.

Вакуум в печах позволяет эффективно выполнять различные технологические процессы, связанные с нагревом материалов: плавку, нагрев, спекание, термообработку, сушку и др.


Сейчас применяются следующие виды промышленных вакуумных печей:

  • камерные вакуумные печи;
  • трехкамерные вакуумные печи;
  • шахтные вакуумные печи;
  • вакуумные печи сопротивления;
  • вакуумные плавильные печи;
  • вакуумные печи для термообработки металла;
  • вакуумная печь для закалки деталей;
  • вакуумная печь для отжига;
  • вакуумно-водородная печь;
  • вакуумная печь для азотирования;
  • вакуумная печь для цементации;
  • вакуумная печь для пайки;
  • вакуумная муфельная печь;
  • вакуумная компрессионная печь;
  • вакуумные печи спекания;
  • лабораторные вакуумные печи.

В современной технике наиболее распространены вакуумные печи сопротивления.

Индукционная печь

Вакуумная индукционная плавильная печь содержит высокочастотный индуктор, размещенный внутри камеры, из которой откачивается воздух. Применяется для плавления и разливки жаропрочных и коррозионностойких материалов, выращивания монокристаллов и зонной очистки. В отличие от электропечи дугового типа, имеет возможность загружать и расплавлять кусковые заготовки (скрап, лом, кусковые отходы, бракованные заготовки). Наиболее распространенным типом является вакуумная индукционная печь с наклоняемым огнеупорным тиглем, установленным внутри стационарного кожуха.

Если вас интересует цена вакуумных индукционных печей, то она зависит от типа печи, фирмы — производителя, создаваемого уровня вакуума, температуры, потребляемой мощности и производительности установки. Обращайтесь, поможем разобраться и выбрать надежную, но недорогую печь.

Термическая вакуумная печь

Термическая вакуумная печь позволяет выполнять в вакууме закалку, отпуск, отжиг, спекание, высокотемпературную пайку, азотирование и цементацию. Достоинством является выполнение термообработки в бескислородной среде и, как следствие, отсутствие следов окислов и обезуглероживания на поверхности изделий . После выемки заготовок из вакуумной термокамеры на них нет следов коррозии, а механические характеристики, сопротивление коррозии и износу возрастают.


Термические вакуумные печи производятся с различным объемом одной, двух или трех рабочих полостей, разными техническими параметрами и характеристиками, в горизонтальном или вертикальном исполнении. Если вы собрались купить вакуумную печь для термообработки металла, то она может быть изготовлена по типовой схеме и обычной цене или по улучшенной схеме с учетом индивидуальных пожеланий заказчика, но цена будет несколько выше. Подъезжайте, подходите, вместе подумаем и выберем то, что вам подходит больше всего.

Вакуумная водородная печь позволяет выполнять спекание и термообработку деталей в вакууме или восстановительной среде водорода. Здесь применяется способ косвенного нагрева токами высокой частоты при высоком напряжении и малой величине тока; это позволяет экономить электроэнергию. Конструкция водородной печи отличается взрывозащищенным исполнением корпуса и специальным устройством теплоизоляции, что повышает надежность обслуживания оборудования. Нагрев спекаемых изделий из тугоплавких металлов (титан, вольфрам, молибден) и их сплавов выполняется излучением путем размещения внутри индуктора тигля из термостойкого материала.

Различают следующие конструкции печей с водородным наполнением:

  • колпаковая водородная печь;
  • камерная водородная печь;
  • шахтная водородная печь;
  • толкательная водородная печь.

Для того, чтобы подобрать и купить водородную печь обычного исполнения или водородную печь для спекания, звоните нам. Постараемся помочь. В случае отсутствия подходящего оборудования на складе, закажем понравившуюся модель у производителя.


Заключение

С нашей точки зрения, представляют интерес брендовые модели вакуумных печей следующих фирм:

  • вакуумные печи SECO/WARWICK;
  • вакуумные печи SCHMETZ;
  • вакуумные печи IPSEN;
  • вакуумные печи ALD;
  • вакуумные печи НПФ;
  • вакуумная печь СГВ;
  • вакуумная печь Вега-5;
  • вакуумная печь СЭВ;
  • вакуумная печь СНВЭ;
  • вакуумная печь А2318;
  • печь водородная толкательная ПВТ-6.

Смотрите, выбирайте, свяжитесь и посоветуйтесь с нами. Поможем всем.

Вакуумные агрегаты являются незаменимым оборудованием на производствах, где требуется осуществлять выплавку металлов и сплавов, обеспечивая им высокую степень очистки. Герметичная вакуумная камера предотвращает проникновение загрязнений, посторонних газов. Это позволяет получать продукцию без примесей, окислений. Если вам нужно купить вакуумную индукционную печь в Москве, ее можно заказать в нашей компании.

Принцип работы вакуумной индукционной печи

Вакуумная печь индукционного типа оснащается тиглем, в котором осуществляется плавка металла. Данные изделия по принципу работы делятся на полунепрерывные и периодические. Полунепрерывная вакуумная установка позволяет выполнять несколько плавок, не открывая корпус. У оборудования периодического типа происходит разгерметизация камеры после каждой выплавки.

Вакуумная камера , в которой происходит процесс плавки, является герметичной, что и дает возможность получать абсолютно чистую продукцию. Металл при обработке не окисляется, благодаря отсутствию кислорода, в него не попадают посторонние частицы. Поддерживает нужное давление, откачивает воздух вакуумный насос , которым оснащено устройство.

У инфракрасных печей есть ряд отличий от агрегатов других типов:

  • допускается использование любого материала: лома, кусков, брикетов;
  • жидкий металл может находиться в условиях вакуума долгое время;
  • в процессе выплавки есть возможность контролировать, изменять химический состав и температуру сплава;
  • можно использовать разные способы рафинирования и раскисления во время плавки.

Эта вакуумная установка может применяться для выплавки жаропрочных, прецизионных жаростойких сплавов, нержавеющей стали.

Преимущества Дана Инжиниринг

Покупка готовых вакуумных индукционных печей или заказ их изготовления по эксклюзивному проекту в компании Дана Инжиниринг в Москве обеспечивает несколько преимуществ:

  • безупречное качество и долговечность оборудования;
  • оперативное выполнение заказа;
  • умеренная стоимость продукции.

В нашей компании работают опытные высококвалифицированные специалисты. Им принадлежит ряд инноваций, позволивших повысить эффективность и экономичность установок. За время работы мы наладили надежные связи с лучшими производителями комплектующих. Конструкторское бюро находится на территории предприятия, что позволяет быстро разрабатывать и реализовывать проекты.

Продажа и стоимость вакуумных индукционных печей

Для желающих заблаговременно определиться с будущими расходами, которых потребует вакуумная индукционная печь, цена стандартных конструкций указана в прайс-листе. Стоимость оборудования, которое производится по эксклюзивным проектам заказчика, рассчитывается индивидуально. Она складывается из нескольких факторов: тип печи, ее размеры, материал изготовления камеры и тигля, дополнительные устройства.

Вакуумные плавильные печи используются для получения металлов и сплавов высочайшего качества. Низкое давление в пространстве рабочей камеры позволяет резко снизить содержание газов в слитке без применения защитных сред.

Область применения индукционных печей


Вакуумные печи используются во многих технологических процессах:

плавка металлов и сплавов: тугоплавких, жаропрочных, высоколегированных;

спекание изделий из легкоокисляющихся металлов;

дегазация жидких металлов и других материалов;

термообработка металлов (закалка, отпуск, отжиг);

нанесение покрытий посредством осаждения испаряемых металлов и пр.

Основные типы вакуумных печей

Наиболее распространенными видами вакуумных печей являются:

дуговые: применяются для выплавки нержавеющих, электротехнических и других высококачественных сталей, тугоплавких металлов (титан, цирконий, тантал и пр.);

плазменные: предназначены для плавления высокореакционных и тугоплавких металлов;

индукционные: их можно отнести к оборудованию широкого применения. Наибольшее распространение получили вакуумные плавильные индукционные печи с наклоняемым тиглем. Их используют на крупных металлургических заводах для плавки качественных и высоколегированных сталей и их разливки в изложницы.

Стандартные типоразмеры плавильных печей

По габаритам вакуумные плавильные печи делятся на лабораторные (емкостью до 50-100 кг) и промышленные. Однако подобная классификация весьма условна: существует множество моделей промышленного значения с рабочим объемом всего в 10-20 кг.

Принцип действия индукционных промышленных печей

Несмотря на конструктивные особенности разных видов вакуумных плавильных печей, работают они по единому принципу: в огнеупорном тигле, помещенном в вакуумную камеру, при помощи нагревательного элемента металл расплавляется (или нагревается жидкий), рафинируется и легируется. Процесс завершается отливкой фасонных изделий или простых слитков.

По принципу действия вакуумные плавильные печи делятся на три группы:

полунепрерывного действия;

непрерывного действия;

периодического действия.

Плавильные промышленные печи полунепрерывного действия не требуют систематической разгерметизации. В них меняют изложницы при помощи камер, отделяемых от основной шиберами. Такие же шлюзовые устройства используются и для загрузки печи. Устройства полунепрерывного действия применяются в промышленности. Благодаря их конструктивным особенностям:

огнеупорная футеровка тиглей находится в благоприятных условиях, так как она не подвергается перепадам температур;

отпадает необходимость откачки воздуха перед началом новой плавки, что весьма положительно сказывается на производительности печи;

в камере до минимума сведено образование окислов металлов, а, следовательно, и загрязнение последующей плавки уменьшается.

В плавильных промышленных печах периодического действия шлюзы не предусмотрены. Чтобы вынуть изложницу или загрузить шихту, приходится каждый раз разгерметизировать корпус и открывать вакуумную камеру. По такому принципу работают лабораторные печи.

Главными преимуществами вакуумных печей являются:

экономическая выгода: вместо дорогостоящих инертных газов используется низкое давление в камере;

высокая степень очистки металла;

возможность осуществлять строгий контроль химсостава и температуры расплава на любой стадии технологического процесса;

защита нагревательных элементов от окисления, что позволяет повышать рабочую температуру.

Стоимость вакуумных плавильных индукционных печей и других моделей достаточно высокая, но затраты быстро окупаются в процессе их эксплуатации.