Раскраска строение растительной клетки. Общий план строения растительной и животной клеток

На заре развития жизни на Земле все клеточные формы были представлены бактериями. Они всасывали органические вещества, растворённые в первичном океане, через поверхность тела.

Со временем некоторые бактерии приспособились производить органические вещества из неорганических. Для этого они использовали энергию солнечного света. Возникла первая экологическая система, в которой эти организмы были производителями. В результате этого в атмосфере Земли появился кислород, выделяемый этими организмами. С его помощью можно из той же самой пищи получить гораздо больше энергии, а добавочную энергию использовать на усложнение строения тела: разделение тела на части.

Одно из важных достижений жизни — разделение ядра и цитоплазмы. В ядре находится наследственная информация. Специальная мембрана вокруг ядра позволила защитить от случайных повреждений. По мере необходимости цитоплазма получает из ядра команды, направляющие жизнедеятельность и развитие клетки.

Организмы, у которых ядро отделено от цитоплазмы, образовали надцарство ядерных (к ним относятся — растения, грибы, животные).

Таким образом, клетка — основа организации растений и животных — возникла и развилась в ходе биологической эволюции.

Даже не вооружённым глазом, а ещё лучше под лупой можно видеть, что мякоть зрелого арбуза состоит из очень мелких крупинок, или зёрнышек. Это клетки — мельчайшие «кирпичики», из которых состоят тела всех живых организмов, в том числе и растительных.

Жизнь растения осуществляется соединённой деятельностью его клеток, создающих единое целое. При многоклеточности частей растения существует физиологическое разграничение их функций, специализация различных клеток в зависимости от местоположения их в теле растения.

Растительная клетка отличается от животной тем, что имеет плотную оболочку, покрывающую внутреннее содержимое со всех сторон. Клетка не является плоской (как её принято изображать), она скорей всего похожа на очень маленький пузырёк, наполненный слизистым содержимым.

Строение и функции растительной клетки

Рассмотрим клетку как структурно-функциональную единицу организма. Снаружи клетка покрыта плотной клеточной стенкой, в которой имеются более тонкие участки — поры. Под ней находится очень тонкая плёнка — мембрана, покрывающая содержимое клетки — цитоплазму. В цитоплазме есть полости — вакуоли, заполненные клеточным соком. В центре клетки или около клеточной стенки расположено плотное тельце — ядро с ядрышком. От цитоплазмы ядро отделено ядерной оболочкой. По всей цитоплазме распределены мелкие тельца — пластиды.

Строение растительной клетки

Строение и функции органоидов растительной клетки

Органоид Рисунок Описание Функция Особенности

Клеточная стенка или плазматическая мембрана

Бесцветная, прозрачная и очень прочная

Пропускает в клетку и выпускает из клетки вещества.

Клеточная мембрана полупроницаемая

Цитоплазма

Густое тягучее вещество

В ней располагаются все другие части клетки

Находится в постоянном движении

Ядро (важная часть клетки)

Округлое или овальное

Обеспечивает передачу наследственных свойств дочерним клеткам при делении

Центральная часть клетки

Сферической или неправильной формы

Принимает участие в синтезе белка

Резервуар, отделённый от цитоплазмы мембраной. Содержит клеточный сок

Накапливаются запасные питательные вещества и продукты жизнедеятельности ненужные клетке.

По мере роста клетки мелкие вакуоли сливаются в одну большую (центральную) вакуоль

Пластиды

Хлоропласты

Используют световую энергию солнца и создают органические из неорганических

Форма дисков, отграниченных от цитоплазмы двойной мембраной

Хромопласты

Образуются в результате накопления каротиноидов

Жёлтые, оранжевые или бурые

Лейкопласты

Бесцветные пластиды

Ядерная оболочка

Состоит из двух мембран (наружная и внутренняя) с порами

Отграничивает ядро от цитоплазмы

Даёт возможность осуществляться обмену между ядром и цитоплазмой

Живая часть клетки — это ограниченная мембраной, упорядоченная, структурированная система биополимеров и внутренних мембранных структур, участвующих в совокупности метаболических и энергетических процессов, осуществляющих поддержание и воспроизведение всей системы в целом.

Важной особенностью является то, что в клетке нет открытых мембран со свободными концами. Клеточные мембраны всегда ограничивают полости или участки, закрывая их со всех сторон.

Современная обобщенная схема растительной клетки

Плазмалемма (наружная клеточная мембрана) — ультрамикроскопическая плёнка толщиной 7,5 нм., состоящая из белков, фосфолипидов и воды. Это очень эластичная плёнка, хорошо смачивающаяся водой и быстро восстанавливающая целостность после повреждения. Имеет универсальное строение, т.е.типичное для всех биологических мембран. У растительных клеток снаружи от клеточной мембраны находится прочная, создающая внешнюю опору и поддерживающая форму клетки клеточная стенка. Она состоит из клетчатки (целлюлозы) — нерастворимого в воде полисахарида.

Плазмодесмы растительной клетки, представляют собой субмикроскопические канальцы, пронизывающие оболочки и выстланные плазматической мембраной, которая таким образом переходит из одной клетки в другую, не прерываясь. С их помощью происходит межклеточная циркуляция растворов, содержащих органические питательные вещества. По ним же идёт передача биопотенциалов и другой информации.

Порами называют отверстия во вторичной оболочке, где клетки разделяют лишь первичная оболочка и срединная пластинка. Участки первичной оболочки и срединную пластинку, разделяющие соседствующие поры смежных клеток, называют поровой мембраной или замыкающей пленкой поры. Замыкающую пленку поры пронизывают плазмодесменные канальцы, но сквозного отверстия в порах обычно не образуется. Поры облегчают транспорт воды и растворенных веществ от клетки к клетке. В стенках соседних клеток, как правило, одна против другой, образуются поры.

Клеточная оболочка имеет хорошо выраженную, относительно толстую оболочку полисахаридной природы. Оболочка растительной клетки продукт деятельности цитоплазмы. В её образовании активное участие принимает аппарат Гольджи и эндоплазматическая сеть.

Строение клеточной мембраны

Основу цитоплазмы составляет ее матрикс, или гиалоплазма, — сложная бесцветная, оптически прозрачная коллоидная система, способная к обратимым переходам из золя в гель. Важнейшая роль гиалоплазмы заключается в объединении всех клеточных структур в единую систему и обеспечении взаимодействия между ними в процессах клеточного метаболизма.

Гиалоплазма (или матрикс цитоплазмы) составляет внутреннюю среду клетки. Состоит из воды и различных биополимеров (белков, нуклеиновых кислот, полисахаридов, липидов), из которых основную часть составляют белки различной химической и функциональной специфичности. В гиалоплазме содержатся также аминокислоты, моносахара, нуклеотиды и другие низкомолекулярные вещества.

Биополимеры образуют с водой коллоидную среду, которая в зависимости от условий может быть плотной (в форме геля) или более жидкой (в форме золя), как во всей цитоплазме, так и в отдельных ее участках. В гиалоплазме локализуются и взаимодействуют между собой и средой гиалоплазмы различные органеллы и включения. При этом расположение их чаще всего специфично для определенных типов клеток. Через билипидную мембрану гиалоплазма взаимодействует с внеклеточной средой. Следовательно, гиалоплазма является динамической средой и играет важную роль в функционировании отдельных органелл и жизнедеятельности клеток в целом.

Цитоплазматические образования – органеллы

Органеллы (органоиды) — структурные компоненты цитоплазмы. Они имеют определённую форму и размеры, являются обязательными цитоплазматическими структурами клетки. При их отсутствии или повреждении клетка обычно теряет способность к дальнейшему существованию. Многие из органоидов способны к делению и самовоспроизведению. Размеры их настолько малы, что их можно видеть только в электронный микроскоп.

Ядро

Ядро — самая заметная и обычно самая крупная органелла клетки. Оно впервые было подробно исследовано Робертом Броуном в 1831 году. Ядро обеспечивает важнейшие метаболические и генетические функции клетки. По форме оно достаточно изменчиво: может быть шаровидным, овальным, лопастным, линзовидным.

Ядро играет значительную роль в жизни клетки. Клетка, из которой удалили ядро, не выделяет более оболочку, перестаёт расти и синтезировать вещества. В ней усиливаются продукты распада и разрушения, вследствие этого она быстро погибает. Образование нового ядра из цитоплазмы не происходит. Новые ядра образуются только делением или дроблением старого.

Внутреннее содержимое ядра составляет кариолимфа (ядерный сок), заполняющая пространство между структурами ядра. В нём находится одно или несколько ядрышек, а также значительное количество молекул ДНК, соединённых со специфическими белками — гистонами.

Строение ядра

Ядрышко

Ядрышко — как и цитоплазма, содержит преимущественно РНК и специфические белки. Важнейшая его функция заключается в том, что в нём происходит формирование рибосом, которые осуществляют синтез белков в клетке.

Аппарат Гольджи

Аппарат Гольджи — органоид, имеющий универсальное распространение во всех разновидностях эукариотических клеток. Представляет собой многоярусную систему плоских мембранных мешочков, которые по периферии утолщаются и образуют пузырчатые отростки. Он чаще всего расположен вблизи ядра.

Аппарат Гольджи

В состав аппарата Гольджи обязательно входит система мелких пузырьков (везикул), которые отшнуровываются от утолщённых цистерн (диски) и располагаются по периферии этой структуры. Эти пузырьки играют роль внутриклеточной транспортной системы специфических секторных гранул, могут служить источником клеточных лизосом.

Функции аппарата Гольджи состоят также в накоплении, сепарации и выделении за пределы клетки с помощью пузырьков продуктов внутриклеточного синтеза, продуктов распада, токсических веществ. Продукты синтетической деятельности клетки, а также различные вещества, поступающие в клетку из окружающей среды по каналам эндоплазматической сети, транспортируются к аппарату Гольджи, накапливаются в этом органоиде, а затем в виде капелек или зёрен поступают в цитоплазму и либо используются самой клеткой, либо выводятся наружу. В растительных клетках Аппарат Гольджи содержит ферменты синтеза полисахаридов и сам полисахаридный материал, который используется для построения клеточной оболочки. Предполагают, что он участвует в образовании вакуолей. Аппарат Гольджи был назван так в честь итальянского учёного Камилло Гольджи, впервые обнаружившего его в 1897 году.

Лизосомы

Лизосомы представляют собой мелкие пузырьки, ограниченные мембраной основная функция которых — осуществление внутриклеточного пищеварения. Использование лизосомного аппарата происходит при прорастании семени растения (гидролиз запасных питательных веществ).

Строение лизосомы

Микротрубочки

Микротрубочки — мембранные, надмолекулярные структуры, состоящие из белковых глобул, расположенных спиральными или прямолинейными рядами. Микротрубочки выполняют преимущественно механическую (двигательную) функцию, обеспечивая подвижность и сокращаемость органоидов клетки. Располагаясь в цитоплазме, они придают клетке определённую форму и обеспечивают стабильность пространственного расположения органоидов. Микротрубочки способствуют перемещению органоидов в места, которые определяются физиологическими потребностями клетки. Значительное количество этих структур расположено в плазмалемме, вблизи клеточной оболочки, где они участвуют в формировании и ориентации целлюлозных микрофибрилл оболочек растительных клеток.

Строение микротрубочки

Вакуоль

Вакуоль — важнейшая составная часть растительных клеток. Она представляет собой своеобразную полость (резервуар) в массе цитоплазмы, заполненную водным раствором минеральных солей, аминокислот, органических кислот, пигментов, углеводов и отделённую от цитоплазмы вакуолярной мембраной — тонопластом.

Цитоплазма заполняет всю внутреннюю полость только у самых молодых растительных клеток. С ростом клетки существенно изменяется пространственное расположение вначале сплошной массы цитоплазмы: у неё появляются заполненные клеточным соком небольшие вакуоли, и вся масса становится ноздреватой. При дальнейшем росте клетки отдельные вакуоли сливаются, оттесняя к периферии прослойки цитоплазмы, в результате чего в сформированной клетке находится обычно одна большая вакуоль, а цитоплазма со всеми органеллами располагаются около оболочки.

Водорастворимые органические и минеральные соединения вакуолей обусловливают соответствующие осмотические свойства живых клеток. Этот раствор определённой концентрации является своеобразным осмотическим насосом для регулируемого проникновения в клетку и выделения из неё воды, ионов и молекул метаболитов.

В комплексе со слоем цитоплазмы и её мембранами, характеризующимися свойствами полупроницаемости, вакуоль образует эффективную осмотическую систему. Осмотически обусловленными являются такие показатели живых растительных клеток, как осмотический потенциал, сосущая сила и тургорное давление.

Строение вакуоли

Пластиды

Пластиды — самые крупные (после ядра) цитоплазматические органоиды, присущие только клеткам растительных организмов. Они не найдены только у грибов. Пластиды играют важную роль в обмене веществ. Они отделены от цитоплазмы двойной мембранной оболочкой, а некоторые их типы имеют хорошо развитую и упорядоченную систему внутренних мембран. Все пластиды едины по происхождению.

Хлоропласты — наиболее распространённые и наиболее функционально важные пластиды фотоавтотрофных организмов, которые осуществляют фотосинтетические процессы, приводящие в конечном итоге к образованию органических веществ и выделению свободного кислорода. Хлоропласты высших растений имеют сложное внутреннее строение.

Строение хлоропласта

Размеры хлоропластов у разных растений неодинаковы, но в среднем диаметр их составляет 4-6 мкм. Хлоропласты способны передвигаться под влиянием движения цитоплазмы. Кроме того, под воздействием освещения наблюдается активное передвижение хлоропластов амебовидного типа к источнику света.

Хлорофилл — основное вещество хлоропластов. Благодаря хлорофиллу зелёные растения способны использовать световую энергию.

Лейкопласты (бесцветные пластиды) представляют собой чётко обозначенные тельца цитоплазмы. Размеры их несколько меньше, чем размеры хлоропластов. Более и однообразна и их форма, приближающая к сферической.

Строение лейкопласта

Встречаются в клетках эпидермиса, клубнях, корневищах. При освещении очень быстро превращаются в хлоропласты с соответствующим изменением внутренней структуры. Лейкопласты содержат ферменты, с помощью которых из излишков глюкозы, образованной в процессе фотосинтеза, в них синтезируется крахмал, основная масса которого откладывается в запасающих тканях или органах (клубнях, корневищах, семенах) в виде крахмальных зёрен. У некоторых растений в лейкопластах откладываются жиры. Резервная функция лейкопластов изредка проявляется в образовании запасных белков в форме кристаллов или аморфных включений.

Хромопласты в большинстве случаев являются производными хлоропластов, изредка — лейкопластов.

Строение хромопласта

Созревание плодов шиповника, перца, помидоров сопровождается превращением хлоро- или лейкопластов клеток мякоти в каратиноидопласты. Последние содержат преимущественно жёлтые пластидные пигменты — каратиноиды, которые при созревании интенсивно синтезируются в них, образуя окрашенные липидные капли, твёрдые глобулы или кристаллы. Хлорофилл при этом разрушается.

Митохондрии

Митохондрии — органеллы, характерные для большинства клеток растений. Имеют изменчивую форму палочек, зёрнышек, нитей. Открыты в 1894 году Р. Альтманом с помощью светового микроскопа, а внутреннее строение было изучено позднее с помощью электронного.

Строение митохондрии

Митохондрии имеют двухмембранное строение. Внешняя мембрана гладкая, внутренняя образует различной формы выросты — трубочки в растительных клетках. Пространство внутри митохондрии заполнено полужидким содержимым (матриксом), куда входят ферменты, белки, липиды, соли кальция и магния, витамины, а также РНК, ДНК и рибосомы. Ферментативный комплекс митохондрий ускоряет работу сложного и взаимосвязанного механизма биохимических реакций, в результате которых образуется АТФ. В этих органеллах осуществляется обеспечение клеток энергией — преобразование энергии химических связей питательных веществ в макроэргиеские связи АТФ в процессе клеточного дыхания. Именно в митохондриях происходит ферментативное расщепление углеводов, жирных кислот, аминокислот с освобождением энергии и последующим превращением её в энергию АТФ. Накопленная энергия расходуется на ростовые процессы, на новые синтезы и т. д. Митохондрии размножаются делением и живут около 10 дней, после чего подвергаются разрушению.

Эндоплазматическая сеть

Эндоплазматическая сеть — сеть каналов, трубочек, пузырьков, цистерн, расположенных внутри цитоплазмы. Открыта в 1945 году английским учёным К. Портером, представляет собой систему мембран, имеющих ультрамикроскопическое строение.

Строение эндоплазматической сети

Вся сеть объединена в единое целое с наружной клеточной мембраной ядерной оболочки. Различают ЭПС гладкую и шероховатую, несущую на себе рибосомы. На мембранах гладкой ЭПС находятся ферментные системы, участвующие в жировом и углеводном обмене. Этот тип мембран преобладает в клетках семян, богатых запасными веществами (белками, углеводами, маслами), рибосомы прикрепляются к мембране гранулярной ЭПС, и во время синтеза белковой молекулы полипептидная цепочка с рибосомами погружается в канал ЭПС. Функции эндоплазматической сети очень разнообразны: транспорт веществ как внутри клетки, так и между соседними клетками; разделение клетки на отдельные секции, в которых одновременно проходят различные физиологические процессы и химические реакции.

Рибосомы

Рибосомы — немембранные клеточные органоиды. Каждая рибосома состоит из двух не одинаковых по размеру частичек и может делиться на два фрагмента, которые продолжают сохранять способность синтезировать белок после объединения в целую рибосому.

Строение рибосомы

Рибосомы синтезируются в ядре, затем покидают его, переходя в цитоплазму, где прикрепляются к наружной поверхности мембран эндоплазматической сети или располагаются свободно. В зависимости от типа синтезируемого белка рибосомы могут функционировать по одиночке или объединяться в комплексы — полирибосомы.

Предметы живой природы имеют клеточное строение схожее для всех видов. Однако каждое царство имеет свои особенности. Узнать подробнее какое строение животной клетки, поможет данная статья, в которой мы расскажем не только об особенностях, но и познакомим с функциями органоидов.

Сложноорганизованный животный организм состоит из большого количества тканей. Форма и назначение клетки зависит от вида ткани, в состав которой она входит. Несмотря на их разнообразие, можно обозначить общие свойства в клеточном строении:

  • мембрана состоит из двух слоёв, которые отделяют содержимое от внешней среды. По своей структуре она эластична, поэтому клетки могут иметь разнообразную форму;
  • цитоплазма находится внутри клеточной мембраны. Это вязкая жидкость, которая постоянно двигается;

За счёт движения цитоплазмы внутри клетки протекают различные химические процессы и обмен веществ.

  • ядро - имеет большие размеры, по сравнению с растениями. Располагается в центре, внутри него находится ядерный сок, ядрышко и хромосомы;
  • митохондрии состоят из множества складок – крист;
  • эндоплазматическая сеть имеет множество каналов, по ним питательные вещества поступают в аппарат Гольджи;
  • комплекс трубочек, именуемый аппаратом Гольджи , накапливает питательные вещества;
  • лизосомы регулируют количество углеродов и других питательных веществ;
  • рибосомы расположены вокруг эндоплазматической сети. Их наличие делает сеть шероховатой, гладкая поверхность ЭПС свидетельствует об отсутствии рибосом;
  • центриоли - особые микротрубочки, которые отсутствуют у растений.

Рис. 1. Строение животной клетки.

Учёные открыли наличие центриолей недавно. Так как увидеть и изучить их можно только с помощью электронного микроскопа.

Функции органоидов клетки

Каждый органоид выполняет определённые функции, совместная их работа составляет единый сплочённый организм. Так, например:

  • клеточная мембрана обеспечивает транспортирование веществ внутрь клетки и из неё;
  • внутри ядра находится генетический код, который передаётся из поколения в поколение. Именно ядро регулирует работу других органелл клетки;
  • энергетическими станциями организма являются митохондрии . Именно здесь образуется вещество АТФ, при расщеплении которого выделяется большое количество энергии.

Рис. 2. Строение митохондрий

  • на стенках аппарата Гольджи синтезируются жиры и углеводы, которые необходимы для построения мембран других органоидов;
  • лизосомы расщепляют ненужные жиры и углеводы, а также вредные вещества;
  • рибосомы синтезируют белок;
  • клеточный центр (центриоли) играют важную роль в образовании веретена деления во время митоза клетки.

Рис. 3. Центриоли.

В отличие от растительной клетки у животной отсутствуют вакуоли. Однако могут образовываться временные маленькие вакуоли, которые содержат вещества для удаления из организма. 4.2 . Всего получено оценок: 630.

На рисунках представлено схематичное и объемное изображение животной и растительной клеток с расположением в них органелл и включений.

Рисунок 10 - Схемы строения животной клетки.

Цитоплазма клетки содержит ряд мельчайших структур, выполняющих разнообразные функции. Эти клеточные структуры, ограниченные мембранами, получили название органелл. Ядро, митохондрии, лизосомы, хлоропласты –это клеточные органеллы. Органеллы могут быть отделены от цитозоля однослойной или двухслойной мембраной.

Главная функция мембраны состоит в том, что через нее движутся различные вещества из клетки в клетку. Таким образом осуществляется обмен веществ между клетками и межклеточным веществом. Также растительная клетка имеет жесткую клеточную стенку над мембраной. Клеточные стенки соседних клеток разделены серединной пластинкой, а для осуществления обмена веществ в клеточных стенках имеется система отверстий – плазмодесм.

На рисунке 11 представлены схемы растительной клетки.

Рисунок 11 – Схемы строения растительной клетки

ИТАК, основные органеллы животной и растительной клетки:

ядро и ядрышко; рибосомы; эндоплазматическая сеть (ЭПС), аппарат Гольджи, лизосомы, вакуоли, митохондрии, пластиды, Клеточный центр (центриоли)

Цитоплазма представляет собой внутреннюю полужидкую среду клеток, ограниченную плазматической мембраной, в которой располагаются ядро и другие органоиды . Важнейшая роль цитоплазмы заключается в объединении всех клеточных структур (компонентов) и обеспечении их химического взаимодействия. Здесь же сосредоточены и разнообразные включения (временные образования) - содержащие нерастворимые отходы обменных процессов и запасные питательные вещества, продукты клеточной деятельности, вакуоли, тончайшие трубочки и нити, образующие скелет клетки. В состав ее входят все виды органических и неорганических веществ. Основное вещество цитоплазмы содержит значительное количество белков и воды. В ней протекают основные процессы обмена веществ, она обеспечивает взаимосвязь ядра и всех органоидов и деятельность клетки как единой целостной живой системы. Цитоплазма постоянно движется, перетекает внутри живой клетки, перемещая вместе с собой различные вещества, включения и органоиды. Это движение называется циклозом.

Ядро - обязательная составная часть клетки эукариот. Оно контролирует и управляет деятельностью клетки, хранит и передаёт генетическую информацию.

Строение ядра одинаково для всех клеток. Ядроклетки обычно имеет размеры от 3 до 10 мкм в диаметре. В нем содержится ДНК, которая вместе с белками - гистонами образует комплексы - хромосомы , видимые в световом микроскопе при делении клетки. Хромосомы (греч. “хрома” - краска, “сома” - тело) несут генетическую информацию о структуре клетки и ее физиологической активности.


Рисунок 12 - Структура ядра клетки

Содержимое ядра отделено от цитоплазмы ядерной оболочкой, состоящей из двух близко расположенных друг к другу мембран, между которыми имеется узкая щель, заполненная полужидким веществом. Время от времени обе мембраны сливаются друг с другом, образуя ядерные поры, через которые происходит обмен различными веществами между ядром и цитоплазмой: из ядра выходят молекулы иРНК и тРНК, участвующие в синтезе различных белков, а входят белки, синтезирующиеся в цитоплазме. Внутреннее содержание ядра составляет ядерный сок - кариоплазма (греч. "karyon" - орех, ядро ореха), ней находится одно или несколько ядрышек и значительное количество белка, РНК и ДНК (99% всей ДНК клетки), из которых образуются хромосомы.

Ядрышко - это место сборки рибосом из рибосомных белков и рибосомных ДНК, синтезируемых в цитоплазме (их может быть одно или несколько). Оно находится внутри ядра, и не имеет собственной мембранной оболочки. Основной функцией является синтез рибосом. В ядрышке локализуются белки, принимающие участие в этих процессах.

Рибосомы - немембранные органеллы. Это - важнейший органоид живой клетки, сферической или слегка эллипсоидной формы, диаметром 15-20 нм, состоящий из большой и малой субъединиц.

Рисунок 13 - Структура и схема рибосомы

Рибосомы обнаружены в клетках всех организмов. В их состав входят белки и РНК. Каждая субъединица состоит из нескольких десятков белков. Белки в рибосоме держатся на каркасе, состоящем из рибосомной РНК.

Рибосомы служат для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК или мРНК. Также существуют транспортные РНК – тРНК, котрые поставляют необходимые аминокислоты для составления пептидной цепи. Транспортная РНК входит в рибосому, комплементарно связываясь с кодоном мРНК, затем происходит реакция при которой аминокислотные остатки связываются друг с другом, а тРНК удаляется. "Словарь" для перевода с языка нуклеотидов на язык аминокислот называется генетическим кодом.

Рисунок 14 - Схема биосинтеза белка

Иногда этот процесс осуществляется не одной рибосомой, а целой группой рибосом (такую группу называют полисомой).

Рисунок 15 -Полисома

Рибосомы из ядрышка поступают (через поры в ядерной оболочке) на мембраны эндоплазматической сети (ЭПС) - системы соединенных между собой канальцев и полостей различной формы и величины, контактирующей со всеми органоидами клетки.

ЭПС бывают двух видов - шероховатая и гладкая: на шероховатой ЭПС (или гранулярной) располагается множество рибосом, которые осуществляют синтез белков. Рибосомы придают мембранам шероховатый вид.. Мембраны гладкой ЭПС не несут рибосом на своей поверхности, в них располагаются ферменты синтеза и расщепления углеводов и липидов. Гладкая выглядит как система тонких трубочек и цистерн.

рибосомы

Рисунок 16 – Эндоплазматическая сеть а) шероховатая;

б) вверху шероховатая, ниже гладкая ЭПС

Продукты синтеза (белки, жиры и углеводы), образовавшиеся в каналах и полостях ЭПС, транспортируются к аппарату Гольджи.

Комплекс Гольджи – это органоид клетки, основой которого является гладкая мембрана, образующая пакеты уплощённых цистерн,

уложенных в стопку, и крупных и мелких пузырьков, расположенных на концах полостей.

Рисунок 17 – Аппарат Гольджи

Все поступившие в аппарат Гольджи вещества накапливаются, а затем в виде крупных и мелких пузырьков поступают в цитоплазму, к органоидам клетки, где потребляются или выделяются из клетки.

Рисунок 18 – Микрофотография аппарата Гольджи.

Наряду с образованием белков, жиров и углеводов и т.д., ЭПС клетки вырабатывает специфические вещества белковой природы – ферменты, которые, накапливаясь в аппарате Гольджи выделяются в виде лизосом - небольших округлых телец. Лизосомы (греч. “лизео” - растворяю, “сома” - тело) - самые мелкие мембранные образования, представляющие собой пузырьки, диаметром 0,5 мкм, содержат ферменты, расщепляющие белки, углеводы, жиры и нуклеиновые кислоты. Лизосомы участвуют в расщеплении старых “частей” клетки,

целых клеток и отдельных органов. Например, исчезновение хвоста у головастика лягушек происходит под действием ферментов лизосом.

Выделяющиеся из аппарата Гольджи пузырьки с водой движутся к вакуолям.

Вакуоли - мембранным органеллам, являющимся резервуарами воды и растворенных в ней соединений. В растительных клетках на долю вакуолей приходится до 90% объема, а животные клетки имеют временные вакуоли, занимающие не более 5% их объема.

Вакуоли

Рисунок 19 – Вакуоли в клетке

Вакуоли растительных клеток поддерживают тургорное давление и поставляют воду, используемую при фотосинтезе.

ЭПС, аппарат Гольджи, лизосомы и вакуоли составляют систему, отдельные элементы которой могут переходить друг в друга при перестройке и изменении функций мембран.

Рисунок 20 - Система образования и выделения веществ через ЭПС и аппарат Гольджи.

Цитоплазма большинства растительных и животных клеток содержит “энергетические станции” - митохондрии.

Митохондрии имеют палочковидную, нитевидную или шаровидную форму диаметром около 1 мкм и длиной около 7 мкм. Митохондрии (греч. “митос” - нить, “хондрион” - зерно, гранула) хорошо видны в световой микроскоп, имеют наружную гладкую мембрану и внутреннюю мембрану, имеющую многочисленные складки - кристы, в которые встроены ферменты, участвующие в преобразовании энергии питательных веществ, поступающих в клетку, в энергию молекул АТФ. Число крист (лат. “криста” - гребень, вырост) неодинаково в разных митохондриях клеток. Их может быть от нескольких десятков до нескольких сотен и даже тысяч: чем больше энергетических затрат осуществляет данная клетка, тем больше она содержит митохондрий. Внутреннее пространство митохондрий заполнено гомогенным веществом, называемым матриксом. Вещество матрикса более плотное, чем то, которое окружает митохондрию.

В матриксе присутствуют нити ДНК и РНК, а также рибосомы, что обеспечивает митохондриям самовозобновление путем деления. Митохондрии тесно связаны с мембранами эндоплазматической сети, каналы которой часто открываются непосредственно в митохондрии.

Количество митохондрий меняется в процессе индивидуального развития организма (онтогенеза): в молодых растущих и делящихся клетках их значительно больше, чем в стареющих.

Рисунок 21 - Митохондрия

Цитоплазма растительных клеток содержит пластиды , животные клетки их не имеют. Различают три основных типа пластид: лейкопласты, хромопласты и хлоропласты. Они имеют разную окраску. Бесцветные лейкопласты находятся в цитоплазме клеток неокрашенных частей растений: стеблях, корнях, клубнях. Например, их много в клубнях картофеля, в которых накапливаются зерна крахмала. Хромопласты находятся в цитоплазме цветков, плодов, стеблей, листьев. Хромопласты обеспечивают желтую, красную, оранжевую окраску растений. Зеленые хлоропласты содержатся в клетках листьев, стеблей и других частях растения, а также у разнообразных водорослей. Размеры хлоропластов 4-6 мкм, они часто имеют овальную форму. У высших растений в одной клетке содержится несколько десятков хлоропластов.

Рисунок 22 - Пластиды

Зеленые хлоропласты способны переходить в хромопласты - поэтому осенью листья желтеют, а зеленые помидоры краснеют при созревании. Лейкопласты могут переходить в хлоропласты (позеленение клубней картофеля на свету). Таким образом, хлоропласты, хромопласты и лейкопласты способны к взаимному переходу.

Основная функция хлоропластов - фотосинтез, т.е. в хлоропластах на свету осуществляется синтез органических веществ из неорганических за счет преобразования солнечной энергии в энергию молекул АТФ. Хлоропласты высших растений имеют размеры 5-10 мкм и по форме напоминают двояковыпуклую линзу. Каждый хлоропласт окружен двойной мембраной, обладающей избирательной проницаемостью. Снаружи располагается гладкая мембрана, а внутренняя имеет складчатую структуру. Основная структурная единица хлоропласта – тилакоид, плоский двумембранный мешочек, ирающий ведущую роль в процессе фотосинтеза. В мембране тилакоида расположены белки, аналогичные белкам митохондрий, которые участвуют в цепи переноса электоронов. Тилакоиды расположены стопками, напоминающие стопки монет (от 10 до 150) и называемыми гранами. Грана имеет сложное строение: в центре располагается хлорофилл, окруженный слоем белка; затем располагается слой липоидов, снова белок и хлорофилл.

В каждом хлоропласте примерно по 50 гран, расположенных в шахматном порядке. В мембранах, формирующих тилакоиды, содержатся ферменты, улавливающие солнечный свет и синтезирующие АТФ. Внутренняя среда хлоропласта содержит ферменты, синтезирующие органические вещества с использованием энергии АТФ. . Каждый хлоропласт содержит ДНК и рибосомы и способен к автономному делению, как и митохондрии. Зеленый цвет хлоропластов обусловлен содержанием в них пигмента хлорофилла, имеющего сложное химическое строение. В живом и функционирующем хлоропласте содержится до 75 % воды.

Рисунок 23 - Хлоропласт

Размеры, форма митохондрий и хлоропластов, наличие в них двуцепочечной ДНК и собственных рибосом делают их похожими на клетки бактерий. На основании этого сходства существует теория симбиотического происхождения эукариотической клетки, в соответствии с которой полагают, что предки современных митохондрий и хлоропластов были когда-то самостоятельными прокариотическими организмами.

Клеточный центр играет исключительную роль в организации цитоскелета: многочисленные цитоплазматические микроклубочки расходятся от него во все стороны. В центре клеточного центра находятся две центриоли. Каждая центриоль представляет собой цилиндр (длиной 0,3 мкм и диаметром 0,1 мкм), по окружности которого располагается девять триплетов микротрубочек. Центриоли образуют пары, члены которых расположены под прямым углом друг к другу. Перед делением клетки члены пары расходятся к противоположным полюсам и возле каждой из них возникает дочерняя центриоль. От центриолей, расположенных на разных полюсах клетки, протягиваются друг к другу параллельные микротрубочки, образуя митотическое веретено, способствующее равномерному распределению генетического материала между дочерними клетками. Часть нитей веретена прикрепляется к хромосомам. Однако центриоли обнаружены не у всех клеток, имеющих клеточный центр. Нет их и у высших растений.

Рисунок 24 - а) центриоль с 9 триплетами микротрубочек;

б) пара центриолей: 1 - материнская; 2 - дочерняя

Помимо различных органоидов клетка имеет различные включения - непостоянные образования, которые то возникают, то исчезают. Включения являются продуктами метаболизма и локализуются в основном в цитоплазме клетки в виде гранул, зерен, капель и кристаллов. Липоиды откладываются в виде мелких капель, полисахариды - в виде гранул (зерна крахмала, гранулы гликогена); белковые соединения откладываются реже (тоже в виде гранул, есть шарики, палочки, пластинки), они есть в яйцеклетках, печени, в цитоплазме простейших и многих других животных. К клеточным включениям относятся некоторые пигменты (липофуцин, образующийся главным образом при старении организма; липохромы находящиеся в яичниках и надпочечниках; ретинин, входящий в состав зрительного пурпура; гемоглобин крови; меланин кожи и другие пигменты). Еще встречаются секреторные включения, чаще располагающиеся в железистых клетках: они могут быть белковыми, сахарами, липопротеидами и т.д.

6 Питание клетки. Фагоцитоз и пиноцитоз.

Любая живая клетка питается , т.е. захватывает из внешней среды питательные вещества (в виде отдельных молекул или больших групп молекул - пищевых частиц , иногда даже целых клеток меньшего размера), и так или иначе использует эти вещества.

Есть всего два принципиально различных варианта использования питательных веществ.

1. Молекулы питательных веществ можно использовать для построения других молекул, выполняющих в жизни клетки какие-то функции, например, молекул, входящих в состав клеточной мембраны. Этот вариант использования клеткой питательных веществ называется ассимиляцией .

2. Другой вариант – получение энергии, которая при этом выделяется и используется клеткой, например, для передвижения или для захвата новых пищевых частиц. Такой вариант использования веществ называется диссимиляцией .

Для переноса воды и различных ионов в клеточной мембране существуют поры, через которые они пассивно поступают в клетку. Кроме того, существует активный перенос веществ в клетку с помощью специальных белков, входящих в состав плазматической мембраны. Он осуществляется также на основе процессов фагоцитоза и пиноцитоза

Фагоцитоз ("фагос" - "пожиратель", "цитос" - "клетка") - питание клетки сравнительно большими пищевыми частицами (в том числе другими клетками). Общая картина фагоцитоза показана на рис. 9.

Рисунок 9- Фагоцитоз. Пиноцитоз. Рецепторный эндоцитоз

Проплывающая мимо клетки пищевая частица касается мембраны и прилипает к ней. Мембрана под ней прогибается, охватывая частицу со всех сторон. В результате образуется мембранный пузырек с частицей внутри - пищеварительная вакуоль . Она отрывается от мембраны и уплывает вглубь цитоплазмы. Там она сливается с другим пузырьком (первичной лизосомой , отделившимся от комплекса Гольджи. Пузырек - результат этого слияния - называют вторичной лизосомой . После этого пищевая частица начинает растворяться. Минут через 20 внутри вторичной лизосомы виднеются только несколько маленьких бесформенных кусочков, почему-то "не захотевших" растворяться. Затем вторичная лизосома подплывает к мембране клетки и сливается с ней, выбрасывая из клетки наружу эти "кусочки" (рисунок 20).

Другой вариант, гораздо более приемлемый для многоклеточных животных – вторичная лизосома выбрасывает непереваренные остатки в специальную вакуоль накопления на «вечное хранение».

Все эти удивительные превращения происходят благодаря деятельности специальных молекул. Специальные молекулы мембраны клетки (рецепторы ), обеспечивают прилипание пищевой частицы к мембране и образование пищеварительной вакуоли. Рецепторы - это молекулы мембраны клетки, которые могут узнавать другие молекулы (лиганды ), и прочно к ним прилипать. Коснувшаяся мембраны частица прилипает в том случае, если на ее поверхности имеются лиганды к каким-нибудь рецепторам, имеющимся на поверхности клетки (на мембране обычно имеется около 100 различных разновидностей рецепторов, и каждый из них "узнает" определенный лиганд).

В случае, когда клетка захватила с помощью фагоцитоза другую маленькую клетку, первичная лизосома приносит из комплекса Гольджи специальные молекулы (пищеварительные ферменты ), умеющие "разрезать" большие молекулы (полимеры) на части. Из-за этого органоиды захваченной клетки "разваливаются" на отдельные мелкие молекулы. В мембране вторичной лизосомы имеются также белки-переносчики , которые умеют переносить эти мелкие молекулы через мембрану в цитоплазму клетки.

Пиноцитоз (греч. "pino" - пить) - процесс захвата и поглощения капелек жидкости с растворенными в ней веществами. Пиноцитоз напоминает фагоцитоз, но фагоцитоз широко распространен у животных, а пиноцитоз осуществляется как растительными, так и животными организмами.

Клеточная стенка растений, бактерий и цианобактерий препятствует фагоцитозу и поэтому фагоцитоз у них практически отсутствует.

Как бы ни были сходны животная и растительная клетки –между ними имеются значительные отличия. Основным отличием является отсутствие в растительной клетке клеточного центра с центриолями, который имеется в животной клетке и вакуолей с водой, которые занимают достаточно большое пространство в клетке и обеспечивают этим тургор растений.

Существенным отличием названных клеток является присутствие в растительной клетке хлоропластов, которые обеспечивают фотосинтез растений и другие функции.

На рисунке можно легко обнаружить отличия животной и растительной клеток.

Рисунок 25 – Отличия животной и растительной клетки

В таблице 2 представлены отличительные признаки растительных и животных клеток.

Таблица 3 – Отличительные признаки растительных и животных клеток

ТЕМА: ТКАНЕВЫЙ УРОВЕНЬ

Тканевый уровень представлен тканями, объединяющими клетки определенного строения, размеров, расположения и сходных функций. Ткани возникли в ходе исторического развития вместе с многоклеточностью. У многоклеточных организмов они образуются в процессе онтогенеза как следствие дифференциации клеток. У животных различают несколько типов тканей (эпителиальная, соединительная, мышечная, нервная, а также кровь и лимфа). У растений различают меристематическую, защитную, основную и проводящую ткани. На этом уровне происходит специализация клеток.

Функции, выполняемые животным организмом, очень разнообразны, поэтому и клетки в нем построены неодинаково. По внешним, или морфологическим, призна­кам можно выделить однородные группы клеток, из которых как бы соткан организм; отсюда произошло название ткани, т. е. различные группы клеток. Каждая группа однородных клеток выполняет определенную функцию и обладает особыми, только ей присущими качествами.

Ни одна из тканей не является независимой, изолированной группой однородных клеток. Только при самой тесной работе всех клеток как частей целого организма возможна их жизнь.

На основании особенностей строения и функции клеток различают следующие ткани: эпителиальную, соединительную, мышечную и нервную.

1. Эпителиальная ткань.

Эпителиальная ткань, или эпителий, характеризуется тем, что клетки располагаются в нем целыми рядами, одна возле другой. Эпителий очень распространен в сложном организме. Он покрывает поверхность тела животного, полости и органы, выполняющие различную физиологическую роль в организме. Эпителий защищает внутренние ткани, и проникнуть к этим тканям можно, только нарушив эпителий.

Функциональное значение эпителия разнообразно, и построен он в различных местах тела неодинаково. Там, где клетки эпителия располагаются в один ряд, он называется однослойным; там, где ряды клеток наслаиваются один на другой, – многослойным.

Различают однослойный цилиндричский эпителий, который, в свою очередь, делится на мерцательный, каемчатый и железистый, а также многослойный эпителий.

Мерцательный эпителий покрывает дыхательные пути, яйцеводы и характеризуется наличием тонких подвижных нитей на свободном конце клеток, называемых ресничками. Они постоянно двигаются в одну сторону, вследствие чего из дыхательных путей выделяются мокрота, различные посторонние частицы, а в яйцеводах происходит перемещение яйцевой клетки в матку.

Каемчатый, или кишечный, эпителий покрывает внутреннюю поверхность кишечника. На свободном конце клеток этого эпителия имеется особое приспособление – кайма, или кутикула, при помощи которой в стенки кишечника всасываются растворенные в воде питательные вещества.

Железистый эпителий находится главным образом в железах. Клетки железистого эпителия выделяют специальную жидкость, называемую секретом. Форма и строение железистых клеток очень разнообразны, как и выделяемый ими секрет.

Многослойный эпителий в зависимости от формы клеток подразделяют на: 1) многослойный цилиндрический, встречающийся редко, главным образом в выводных протоках желез; 2) многослойный переходный, отличающийся большой растяжимостью и выстилающий полости, сильно изменяющие свой объем (например, полость мочевого пузыря); 3) многослойный плоский, состоящий из плоских клеток, которые ороговевают. Он покрывает снаружи тело животного, выстилает внутри ряд органов (полость рта, глотку, пищевод и др.), являясь защитным эпителием.

2. Соединительные ткани

Рисунок 26 - Строение плотной соединительной ткани: 1 - коллагеновые волокна; 2 - ядро; 3 - клетки: 4 - эластиновые волокна

Соединительные ткани распространены по всему организму. Они связывают различные части тела между собой. Соединительные ткани подразделяются на две основные группы: ткани питающие (трофические) и опорные (механические).

Кровь и лимфа по своему происхождению относятся к трофической группе соединительной ткани. В состав крови входят плазма и форменные элементы.

Плазма представляет собой жидкую часть крови и состоит из воды, неорганических и органических веществ. Одни из них являются питательным материалом для клеток, другие – продуктами обмена веществ, подлежащими удалению из организма.

В крови, находящейся вне организма, плазма свертывается, причем выпадает белковое вещество – фибрин, образующий тромб. Способность крови образовывать тромб предохраняет от кровотечений при нарушении целостности кровеносного сосуда.

Жидкость, остающаяся после удаления фибрина, называется кровяной сывороткой.

К группе механических соединительных тканей относятся хрящевая и костная ткани.

Хрящевая ткань встречается там, где требуется большая упругость (остов дыхательного аппарата), или там, где необходимо смягчать толчки и сотрясения (на концах костей в суставах).

3. Костная ткань

Рисунок 27- Строение костной ткани: 1 - костная клетка (остеоцит); 2 - ядро; 3 - межклеточное вещество

Костная ткань – самая прочная в организме. В ней, кроме органических соединений, много минеральных веществ, а именно фосфорно-кальциевых солей. Это придает костной ткани большую крепость, а наличие органических веществ – упругость.

Кость пронизана каналами, через которые проходят кровеносные и лимфатические сосуды, а также нервные волокна. Стенки костей состоят из сплошного компактного вещества, а внутри кость построена из губчатого вещества, пустые пространства которого заполнены костным мозгом.

Кроме того, существует волокнистая соединительная ткань, выполняющая, помимо опорной, и трофическую функцию, так как в ее межклеточных щелях циркулируют питательные вещества. Волокнистая соединительная ткань бывает рыхлой, плотной и эластической. Рыхлая соединительная ткань залегает под кожей между мускулами и служит для соединения и образования остова отдельных органов. Плотная соединительная ткань встречается в сухожилиях, связках и других органах и отличается от рыхлой плотностью и прочностью. Эластическая соединительная ткань характеризуется большим количеством эластических волокон, прочностью, достаточной упругостью; встречается она в различных связках и крупных кровеносных сосудах.

4. Хрящевая ткань

Рисунок 28 - Строение хрящевой ткани: 1 - межклеточное вещество; 2 - клетка; 3 – ядро

5. Мышечная ткань

Мышечная ткань имеет своеобразные клетки, сильно вытянутые в длину, почему они и получили название мышечных волокон. Различают гладкую и поперечнополосатую мышечную ткань

Рисунок 29- Строение мышечной ткани: 1 - мышечная клетка (мышечное волокна); 2 - ядра; 3 - межклеточное вещество; 4 - волокно межклеточного вещества

Гладкая мышечная ткань сокращается независимо от воли животного. Она распространена во внутренних органах тела: пищеварительных, дыхательных и мочеполовых; в сосудах, в селезенке и т. д.

Поперечнополосатая мышечная ткань подразделяется на скелетную и сердечную. Скелетная мышечная ткань находится на тех частях скелета, которые участвуют в движении; она сокращается по произволу, почему ее и называют мышечной тканью произвольного движения. Сердечная мышечная ткань имеется в сердце и функционирует независимо от воли животного. Ее особенностью являются правильно чередующиеся сокращения, т. е. ритм.

6. Нервная ткань

Нервная ткань предназначена в организме для восприятия и передачи раздражений как внутри организма, так и при общении его с внешней средой. Через нервную ткань, животные воспринимают самые разнообразные ощущения: свет, цвет, запах, вкус, звук и пр.

ТЕМА: Организменный уровень развития живого

Онтогенез (от греч. ontos – существо, geneses – развитие) – это цикл развития индивидуального организма (животного или растения), начинающийся с образования давших ему начало половых клеток и заканчивающийся его смертью.

Онтогенез – индивидуальное развитие организма

Филогенез.- история возникновения и развития вида (животных или растений).

В Х1Х веке немецкими учеными Фрицем Мюллером и Эрнестом Геккелем был сформулирован биогенетический закон :

Онтогенез (индивидуальное развитие) каждой особи есть краткое и быстрое повторение филогенеза (исторического развития) вида, к которому эта особь относится

Онтогенез в зависимости от характера развития организмов типируют на прямой и непрямой

Прямое развитие организмов в природе встречается в виде неличиночного и внутриутробного развития, тогда как непрямое развитие наблюдается в форме личиночного развития.

1.Механизм роста и развития организмов.

Итак, после оплодотворения яйцеклетки начинается рост и развитие нового живого организма, который повторяет путь развития родителей – отца и матери. Это – очень сложный процесс и заключается во взаимодействии наследственности, полученной от родителей, и условий среды окружающей растущий организм.

Рост организма это постепенное увеличение его массы в результате увеличения количества клеток.

Рост можно измерить, построив на основе результатов измерений кривые размеров организма, массы, сухой массы, количества клеток, содержания азота и других показателей.

При этом иногда одни клетки становятся морфологически, биохимически и функционально отличными от других клеток. Размножение и дифференцировка одних клеток всегда координированы с ростом и дифференцировкой других. Оба эти процесса происходят на протяжении всего жизненного цикла организма. Поскольку дифференцирующиеся клетки изменяют свою форму, а в изменения формы вовлекаются группы клеток, то это сопровождается морфогенезом, который определяет структурную организацию клеток и тканей, а также общую морфологию организмов.

Таким образом, рост является результатом количественных изменений в виде увеличения количества клеток (массы тела) и качественных – в виде дифференцировки клеток и морфогенеза.

Развитие – это качественные изменения организмов, обеспечивающие в ходе онтогенеза прогрессивные изменения индивидов.

В рамках современных представлений развитие организма понимают в качестве процесса, при котором структуры, образовавшиеся ранее, побуждают развитие последующих структур. Учитывая также влияние факторов среды: Развитие определяется единством внутренних и внешних факторов.

2.Периоды онтогенеза

Рост может быть неопределенным – продолжающимся всю жизнь (у растений), и определенным, ограниченным каким–либо сроком (у многих животных рост прекращается вскоре после достижения полового созревания).

Рост и развитие животного организма в разные периоды происходят неодинаково. С момента оплодотворения клетки делятся очень быстро, и наблюдается усиленный рост. Далее в связи с образованием различных тканей и органов рост постепенно замедляется и к определенному возрасту взрослого организма полностью прекращается.

Онтогенез подразделяют на проэмбриональный, эмбриональный и постэмбриональный периоды.

Проэмбриональный, период в индивидуальном развитии организмов связан с образованием половых клеток в организме.

Эмбриональный период начинается со слияния ядер мужской и женской половых клеток, когда происходит процесс оплодотворения яйцеклеток. У организмов, для которых характерно внутриутробное развитие, эмбриональный период заканчивается рождением потомства,

В случае человека, а иногда и высших животных, период развития до рождения часто называют пренатальным, после рождения – постнатальным. В пределах пренатального (эмбрионального) периода выделяют начальный (первая неделя развития), зародышевый и плодный периоды. Развивающийся зародыш до образования зачатков органов называют эмбрионом, после образования зачатков органов – плодом.

Различия в развитии организма в отдельные периоды жизни сопровождаются и различными требованиями к условиям окружающей его среды. Так, в утробный или пренатальный период зародыш не способен к самостоятельному питанию и газообмену. Он снабжается всем необходимым через материнский организм. Ко времени рождения организм уже подготовлен к другим условиям развития: к поступлению воздуха в легкие для поддержания газообмена и к питанию организма через пищеварительный тракт сначала молозивом, а затем молоком матери, которые в начальный период после рождения никаким другим питанием заменять не рекомендуется.

После появления организма на свет начинается его постэмбриональное развитие (постнатальное для человека), которое у разных организмов протекает от нескольких дней до сотен лет в зависимости от их видовой принадлежности. Следовательно, продолжительность жизни – это видовой признак организмов, не зависящий от уровня их организации

В постэмбриональном онтогенезе различают ювенильный и пубертатный периоды, а также период старости, заканчивающийся смертью.

Ювенильный период . Этот период – (юный) определяется временем от рождения организма до полового созревания.

Пубертатный период . Этот период называют еще зрелым, и он связан с половой зрелостью организмов. Развитие организмов в этот период достигает максимума

Старость как этап онтогенеза. Старость является предпоследним этапом онтогенеза организмов, причем ее длительность определяется общей продолжительностью жизни. Наиболее точно старость изучена у человека.

Известны самые различные определения старости человека. В частности, одно из наиболее популярных определений заключается в том, что

Старость есть накопление последовательных изменений, сопровождающих повышение возраста организма и увеличивающих вероятность его болезней или смерти. Науку о старости человека называют геронтологией.

В случае человека различают физиологическую старость, старость, связанную с календарным возрастом, и преждевременное старение, обусловленное социальными факторами и болезнями. В соответствии с рекомендациями ВОЗ пожилым возрастом человека следует считать возраст порядка 60-75 лет, а старым в 75 лет и более.

В начале нашего века возникла микробиологическая теория старения, творцом которой был И. И. Мечников, который различал физиологическую старость и патологическую. Он считал, что старость человека является патологической, т. е. преждевременной. Основу представлений И. И. Мечникова составляло учение об ортобиозе (правильный, жизнь), в соответствии с которым основной причиной старения является повреждение нервных клеток продуктами интоксикации, образующимися в результате гниения в толстом кишечнике . Развивая учение о нормальном образе жизни (соблюдение правил гигиены, регулярный труд, воздержание от вредных привычек), И. И. Мечников предлагал также способ подавления гнилостных бактерий кишечника путем употребления кисломолочных продуктов.

В 30-е гг. широкое распространение получила теория Павлова, который установил роль центральной нервной системы в нормальном функционировании организмов. Последователи И. П. Павлова в экспериментах на животных показали, что преждевременное старение вызывается нервными потрясениями и продолжительным нервным перенапряжением.

Заслуживает упоминания теория возрастных изменений соединительной ткани, сформулированная в те годы А. А. Богомольцем (1881-1946). Он считал, что физиологическую активность организма обеспечивает соединительная ткань (костная ткань, хрящи, сухожилия, связки и волокнистая соединительная ткань) и что изменения коллоидного состояния клеток, потеря их тургора и т. д. определяют возрастные изменения организмов.

Наиболее распространенные современные представления о механизмах старения сводятся к тому, что в процессе жизни в клетках организма накапливаются соматические мутации, в результате которых происходит синтез дефектных белков, которые ведут к нарушениям в клеточном метаболизме, и это ведет к старению.

Однако исчерпывающей теории старения все же еще не создано, поскольку ясно, что ни одна из этих теорий самостоятельно объяснить механизмы старения не может.

Завершающим этапом онтогенеза является смерть. Вопрос о смерти в биологии занимает особое место, ибо чувство смерти «...совершенно инстинктивно присуще человеческой природе и всегда составляло одну из величайших забот человека» (И. И. Мечников, 1913). Больше того, вопрос о смерти стоял и стоит в центре внимания всех философских и религиозных учений, хотя философия смерти в разные исторические времена представлялась по-разному.

В античном мире Сократ и Платон доказывали бессмертие души, Цицерон и Сенека также- признавали будущую жизнь, но Марк Аврелий считал смерть естественным явлением, которое следует принимать безропотно.

В прошлом веке И. Кант и И. Фихте (1762-1814) тоже верили в будущую жизнь, а А. Г. Гегель придерживался убеждений, по которым душа поглощается «абсолютным существом», хотя природа этого «существа» не раскрывалась.

В соответствии со всеми известными религиозными учениями земная жизнь человека продолжается и после его смерти, и человек должен неустанно готовиться к этой будущей смерти.

Однако, естествоиспытатели и философы, не признающие бессмертия, считали и считают, что смерть представляет собой , как неоднократно подчеркивал И. И. Мечников, естественный исход жизни организма.

Научные данные свидетельствуют о том, что у одноклеточных организмов (растений и животных) следует отличать смерть от прекращения их существования. Смертью является их гибель, тогда как прекращение существования связано с их делением. Следовательно, недолговечность одноклеточных организмов компенсируется их размножением.

У многоклеточных растений и животных смерть является в полном смысле слова завершением жизни организма.

Продолжительность жизни. Среди растений и животных разные организмы живут разное время. Например, травянистые растения (дикие и культурные) живут в течение одного сезона. Напротив, древесные растения дуб – 2000 лет, сосна – до 3000-4000 лет, птицы некоторых видов – до 100 лет. Продолжительность жизни млекопитающих является меньшей. Например, мелкий рогатый скот живет – 20-25 лет, крупный рогатый скот – 30 лет и более, слоны – 100 лет, кролики – 10 лет.

Среди млекопитающих долгожителем является человек. Многие люди доживали до 115-120 лет и более, а отдельные люди доживали даже до 150 лет.

В то же время долгожители часто сохраняют на высоком уровне как физические, так и умственные способности. Например, Платон, Микеланджело, Тициан, И. Гёте и В. Гюго лучшие свои произведения создали после 75 лет.

3. Наследственные изменения

Наследственность и изменчивость – это важнейшие свойства живого, которые не только отличают живое от неживого, но и определяют совместно с размножением бесконечное продолжение жизни, ее непрерывность на всех уровнях организации живого.

Непрерывность жизни имеет генетический характер, ибо наследсвенность и изменчивость поддерживают стабильность свойств организма и способность организмов к изменчивости.

Генотип – это сумма генов данного организма, его индивидуальная генетическая конституция, которую он получает от своих родителей.

Генотип не изменяется в течение онтогенеза.

Фенотип – сумма всех внешних и внутренних признаков (свойств) данного организма. У всех организмов различают качественные и количественные признаки. Качественными признаками служат те, которые можно, глядя на них, сфотографировать или описать: форма тела, строение, масть животного, окраска цветков и плодов, форма семян, плодов и т. д

Количественными признаками служат те, которые можно определить путем измерений. Например, масса семян, плодов, количество, форма и размеры листьев, высота стеблей, урожайность и т. д. У домашних животных количественными признаками являются молочная и мясная продуктивность, белковое содержание мяса, количество жира и белка в молоке коров. Учет количественных признаков имеет очень большое значение не только в хозяйственном плане, но и в том, что их используют в селекции высокоурожайных сортов растений и высокопродуктивных пород животных, ведя отбор на хозяйственно полезные признаки. Как правило, количественные признаки и у растений и у животных контролируются не одним, а большим количеством генов, действующих в одном направлении.

У человека количественными признаками являются масса тела, головного мозга, рост, количество форменных элементов крови, степень пигментации кожи, общая интеллектуальность и т. д.

В противоположность генотипу фенотип любого организма изменяется в процессе роста и развития на протяжении всей его жизни.

В случае человека изменения фенотипа у отдельного индивидуума можно проследить по его фотографиям (качественные признаки), сделанным в разные периоды жизни. Можно сказать, что фенотип организма является различным в онтогенезе индивидуума, т. е. в эмбриональном периоде, после рождения, во время полового созревания и т. д.

4.Роль наследственности и среды в формировании фенотипа.

Организмы живут и размножаются в среде, условия которой удовлетворяют их. Внешняя среда влияет на выражение наследственных признаков и определяет степень их проявления. Взаимодействие наследственности и среды определяет, каким организм является в данный момент и как он должен развиваться в будущем. Наследственность предполагает, каким организм должен стать, но не каким он будет. То, каким организм станет в действительности, решается взаимодействием наследственности и среды.

Фенотипы являются результатом взаимодействия различных генов (компонентов генотипа) между собой и генотипа со средой.

5.Метод изучения наследственности организмов

Изучение наследственности очень важно. Главным и единственным методом изучения наследственности организмов является классический генетический (гибридологический) анализ, или, как его еще называют, формальный генетический анализ. Основы этого метода были разработаны Г. Менделем.

Он заключается в последовательном разложении генома анализируемого организма на группы сцепленных генов, а групп сцепления - на генные локусы с дальнейшим установлением последовательности генных локусов вдоль хромосомных пар и выяснением тонкой структуры генов.

Генетический анализ в принципе подобен химическому анализу, задача которого заключается в разложении сложных химических соединений на более простые компоненты, например нуклеопротеиды в результате гидролиза расщепляются на структурные части.

Классический генетический анализ основывается на расщеплении (сегрегации) и рекомбинации генов в мейозе и осуществляется путем скрещиваний особей с разными признаками и учета результатов скрещиваний.

Схема генетического анализа организмов состоит из ряда последовательных этапов, а именно:

1. Идентификация генов;

2. Установление генных локусов на хромосомных парах;

3. Установление последовательности генных локусов вдоль хромосомных пар;

4. Выяснение тонкой структуры генов.

Результаты генетического анализа оформляют путем составления генетических карт.

Клетки, образующие ткани животных и растений, значительно различаются по форме, размерам и внутреннему строению. Однако все они обнаруживают сходство в главных чертах процессов жизнедеятельности, обмена веществ, в раздражимости, росте, развитии, способности к изменчивости.

Клетки всех типов содержат два основных компонента, тесно связанных между собой, -- цитоплазму и ядро. Ядро отделено от цитоплазмы пористой мембраной и содержит ядерный сок, хроматин и ядрышко. Полужидкая цитоплазма заполняет всю клетку и пронизана многочисленными канальцами. Снаружи она покрыта цитоплазматической мембраной. В ней имеются специализированные структуры-органоиды, присутствующие в клетке постоянно, и временные образования -- включения. Мембранные органоиды: наружная цитоплазматическая мембрана (HЦM), эндоплазматическая сеть (ЭПС), аппарат Гольджи, лизосомы, митохондрии и пластиды. В основе строения всех мембранных органоидов лежит биологическая мембрана. Все мембраны имеют принципиально единый план строения и состоят из двойного слоя фосфолипидов, в который с различных сторон ива разную глубину погружены белковые молекулы. Мембраны органоидов отличаются друг от друга лишь наборами входящих в них белков (рис. 2).

Рис. 1.

Цитоплазматическая мембрана. У всех клеток растений, многоклеточных животных, у простейших и бактерий клеточная мембрана трехслойна: наружный и внутренний слои состоят из молекул белков, средний -- из молекул липидов. Она ограничивает цитоплазму от внешней среды, окружает все органоиды клетки и представляет собой универсальную биологическую структуру. В некоторых клетках наружная оболочка образована несколькими мембранами, плотно прилегающими друг к другу. В таких случаях клеточная оболочка становится плотной и упругой и позволяет сохранить форму клетки, как, например, у эвглены и инфузории туфельки. У большинства растительных клеток, помимо мембраны, снаружи имеется еще толстая целлюлозная оболочка -- клеточная стенка . Она хорошо различима в обычном световом микроскопе и выполняет опорную функцию за счет жесткого наружного слоя, придающего клеткам четкую форму.

На поверхности клеток мембрана образует удлиненные выросты -- микроворсинки, складки, впячивания и выпячивания, что во много раз увеличивает всасывающую или выделительную поверхность. С помощью мембранных выростов клетки соединяются друг с другом в тканях и органах многоклеточных организмов, на складках мембран располагаются разнообразные ферменты, участвующие в обмене веществ. Отграничивая клетку от окружающей среды, мембрана регулирует направление диффузии веществ и одновременно осуществляет активный перенос их внутрь клетки (накопление) или наружу (выделение). За счет этих свойств мембраны концентрация ионов калия, кальция, магния, фосфора в цитоплазме выше, а концентрация натрия и хлора ниже, чем в окружающей среде. Через поры наружной мембраны из внешней среды внутрь клетки проникают ионы, вода и мелкие молекулы других веществ. Проникновение в клетку относительно крупных твердых частиц осуществляется путем фагоцитоза (от греч. “фаго” -- пожираю, “питое” -- клетка) 1 . При этом наружная мембрана в месте контакта с частицей прогибается внутрь клетки, увлекая частицу в глубь цитоплазмы, где она подвергается ферментативному расщеплению. Аналогичным путем в клетку попадают и капли жидких веществ; их поглощение называется пиноцитозом (от греч. “пино” -- пью, “цитос” -- клетка). Наружная клеточная мембрана выполняет и другие важные биологические функции.

Цитоплазма на 85 % состоит из воды, на 10 % -- из белков, остальной объем приходится на долю липидов, углеводов, нуклеиновых кислот и минеральных соединений; все эти вещества образуют коллоидный раствор, близкий по консистенции глицерину. Коллоидное вещество клетки в зависимости от ее физиологического состояния и характера воздействия внешней среды имеет свойства и жидкости, и упругого, более плотного тела. Цитоплазма пронизана каналами различной формы и величины, которые получили название эндоплазматической сети. Их стенки представляют собой мембраны, тесно контактирующие со всеми органоидами клетки и составляющие вместе с ними единую функционально-структурную систему для осуществления обмена веществ и энергии и перемещения веществ внутри клетки. цитоплазма ядро клетка растительный

В стенках канальцев располагаются мельчайшие зернышки--гранулы, называемые рибосомами. Такая сеть канальцев называется гранулярной. Рибосомы могут располагаться на поверхности канальцев разрозненно или образуют комплексы из пяти-семи и более рибосом, называемые полисомами. Другие канальцы гранул не содержат, они составляют гладкую эндоплазматическую сеть. На стенках располагаются ферменты, участвующие в синтезе жиров и углеводов.

Внутренняя полость канальцев заполнена продуктами жизнедеятельности клетки. Внутриклеточные канальцы, образуя сложную ветвящуюся систему, регулируют перемещение и концентрацию веществ, разделяют различные молекулы органических веществ и этапы их, синтеза. На внутренней и внешней поверхности мембран, богатых ферментами, осуществляется синтез белков, жиров и углеводов, которые либо используются в обмене веществ, либо накапливаются в цитоплазме в качестве включений, либо выводятся наружу.

Рибосомы встречаются во всех типах клеток -- от бактерий до клеток многоклеточных организмов. Это округлые тельца, состоящие из рибонуклеиновой кислоты (РНК) и белков почти в равном соотношении. В их состав непременно входит магний, присутствие которого поддерживает структуру рибосом. Рибосомы могут быть связаны с мембранами эндоплазматической сети, с наружной клеточной мембраной или свободно лежать в цитоплазме. В них осуществляется синтез белков. Рибосомы кроме цитоплазмы встречаются в ядре клетки. Они образуются в ядрышке и затем поступают в цитоплазму.

Комплекс Гольджи в растительных клетках имеет вид отдельных телец, окруженных мембранами. В животных клетках этот органоид представлен цистернами, канальцами и пузырьками. В мембранные трубки комплекса Гольджи из канальцев эндоплазматической сети поступают продукты секреции клетки, где они химически перестраиваются, уплотняются, а затем переходят в цитоплазму и либо используются самой клеткой, либо выводятся из нее. В цистернах комплекса Гольджи происходит синтез полисахаридов и их объединение с белками, в результате чего образуются гликопротеиды.

Митохондрии -- небольшие тельца палочковидной формы, ограниченные двумя мембранами. От внутренней мембраны митохондрии отходят многочисленные складки -- кристы, на их стенках располагаются разнообразные ферменты, с помощью которых осуществляется синтез высокоэнергетического вещества -- аденозинтрифосфорной кислоты (АТФ) 1 . В зависимости от активности клетки и внешних воздействий митохондрии могут перемещаться, изменять свои размеры, форму. В митохондриях найдены рибосомы, фосфолипиды, РНК и ДНК. С присутствием ДНК в митохондриях связывают способность этих органоидов к размножению путем образования перетяжки или почкованием в период деления клетки, а также синтез части митохондриальных белков.

Лизосомы - мелкие овальные образования, ограниченные мембраной и рассеянные по всей цитоплазме. Встречаются во всех клетках животных и растений. Они возникают в расширениях эндоплазматической сети и в комплексе Гольджи, здесь заполняются гидролитическими ферментами, а затем обособляются и поступают в цитоплазму. В обычных" условиях лизосомы переваривают частицы, попадающие в клетку путем фагоцитоза, и органоиды отмирающих клеток. Продукты лизиса выводятся через мембрану лизосомы в цитоплазму, где они включаются в состав новых молекул. При разрыве лизоеомной мембраны ферменты поступают в цитоплазму и переваривают ее содержимое, вызывая гибель клетки.

Пластиды есть только в растительных клетках и встречаются, у большинства зеленых растений. В пластидах синтезируются и накапливаются органические вещества. Различают пластиды трех видов: хлоропласты, хромопласты и лейкопласты.

Хлоропласты -- зеленые пластиды, содержащие зеленый пигмент хлорофилл. Они находятся в листьях, молодых стеблях, незрелых плодах. Хлоропласты окружены двойной мембраной. У высших растений внутренняя часть хлоропластов заполнена полужидким веществом, в котором параллельно друг другу уложены пластинки. Парные мембраны пластинок, сливаясь, образуют стопки, содержащие хлорофилл. В каждой стопке хлоропластов высших растений чередуются слои молекул белка и молекул липидов, а между ними располагаются молекулы хлорофилла. Такая слоистая структура обеспечивает максимум свободных поверхностей и облегчает захват и перенос энергии в процессе фотосинтеза.

Хромопласты -- пластиды, в которых содержатся растительные пигменты (красный или бурый, желтый, оранжевый). Они сосредоточены в цитоплазме клеток цветков, стеблей, плодов, листьев растений и придают им соответствующую окраску. Хромопласты образуются из лейкопластов или хлоропластов в результате накопления пигментов каротиноидов 1 .

Лейкопласты-- бесцветные пластиды, располагающиеся в неокрашенных частях растений: в стеблях, корнях, луковицах и др. В лейкопластах одних клеток накапливаются зерна крахмала, в лейкопластах других клеток -- масла, белки.

Все пластиды возникают из своих предшественников -- пропластид. В них выявлена ДНК, которая контролирует размножение этих органоидов .

Клеточный центр, или центросома, играет важную роль при делении, клетки и состоит из двух центриолей. Он встречается у всех клеток животных и растений, кроме цветковых, низших грибов и некоторых, простейших. Центриоли в делящихся клетках принимают участие в формировании веретена деления и располагаются на его полюсах. В делящейся клетке первым делится клеточный центр, одновременно образуется ахроматиновое веретено, ориентирующее хромосомы при расхождении их к полюсам. В дочерние клетки отходит по одной центриоле.

У многих растительных и животных клеток имеются органоиды специального назначения : реснички, выполняющие функцию движения (инфузории, клетки дыхательных путей), жгутики (простейшие одноклеточные, мужские половые клетки у животных и растений и др.).

Включения - временные элементы, возникающие в клетке на определенной стадии ее жизнедеятельности в результате синтетической функции. Они либо используются, либо выводятся из клетки. Включениями являются также запасные питательные вещества: в растительных клетках--крахмал, капельки жира, блки, эфирные масла, многие органические кислоты, соли органических и неорганических кислот; в животных клетках - гликоген (в клетках печени и мышцах), капли жира (в подкожной клетчатке); Некоторые включения накапливаются в клетках как отбросы -- в виде кристаллов, пигментов и др.

Вакуоли -- это полости, ограниченные мембраной; хорошо выражены в клетках растений и имеются у простейших. Возникают в разных участках расширений эндоплазматической сети. И постепенно отделяются от нее. Вакуоли поддерживают тургорное давление, в них сосредоточен клеточный или вакуолярный сок, молекулы которого определяют его осмотическую концентрацию. Считается, что первоначальные продукты синтеза - растворимые углеводы, белки, пектины и др. -- накапливаются в цистернах эндоплазматической сети. Эти скопления и представляют собой зачатки будущих вакуолей.

Цитоскелет . Одной из отличительных особенностей эукариотической клетки является развитие в ее цитоплазме скелетных образований в виде микротрубочек и пучков белковых волокон. Элементы цитоскелета тесно связаны с наружной цитоплазматической мембраной и ядерной оболочкой, образуют сложные переплетения в цитоплазме. Опорные элементы цитоплазмы определяют форму клетки, обеспечивают движение внутриклеточных структур и перемещение всей клетки.

Ядро клетки играет основную роль в ее жизнедеятельности, с его удалением клетка прекращает свои функции и гибнет. В большинстве животных клеток одно ядро, но встречаются и многоядерные клетки (печень и мышцы человека, грибы, инфузории, зеленые водоросли). Эритроциты млекопитающих развиваются из клеток-предшественников, содержащих ядро, но зрелые эритроциты утрачивают его и живут недолго.

Ядро окружено двойной мембраной, пронизанной порами, посредством которых оно тесно связано с каналами эндоплазматической сети и цитоплазмой. Внутри ядра находится хроматин -- спирализованные участки хромосом. В период деления клетки они превращаются в палочковидные структуры, хорошо различимые в световой микроскоп. Хромосомы -- это сложный комплекс белков с ДНК, называемый нуклеопротеидом .

Функции ядра состоят в регуляции всех жизненных отправлений клетки, которую оно осуществляет при помощи ДНК и РНК-материальных носителей наследственной информации. В ходе подготовки к делению клетки ДНК удваивается, в процессе митоза хромосомы расходятся и передаются дочерним клеткам, обеспечивая преемственность наследственной информации у каждого вида организмов.

Кариоплазма -- жидкая фаза ядра, в которой в растворенном виде находятся продукты жизнедеятельности ядерных структур.

Ядрышко -- обособленная, наиболее плотная часть ядра. В состав ядрышка входят сложные белки и РНК, свободные или связанные фосфаты калия, магния, кальция, железа, цинка, а также рибосомы. Ядрышко исчезает перед началом деления клетки и вновь формируется в последней фазе деления .

Таким образом, клетка обладает тонкой и весьма сложной организацией. Обширная сеть цитоплазматических мембран и мембранный принцип строения органоидов позволяют разграничить множество одновременно протекающих в клетке химических реакций. Каждое из внутриклеточных образований имеет свою структуру и специфическую функцию, но только при их взаимодействии возможна гармоничная жизнедеятельность клетки.На основе такого взаимодействия вещества из окружающей среды поступают в клетку, а отработанные продукты выводятся из нее во внешнюю среду -- так совершается обмен веществ. Совершенство структурной организации клетки могло возникнуть только в результате длительной биологической эволюции, в процессе которой выполняемые ею функции постепенно усложнялись.

Простейшие одноклеточные формы представляют собой и клетку, и организм со всеми его жизненными проявлениями. В многоклеточных организмах клетки образуют однородные группы -- ткани. В свою очередь ткани формируют органы, системы, и их функции определяются общей жизнедеятельностью целостного организма.

Просмотры: 26940

04.03.2018

Клетки растений, как и клетки большинства живых организмов, состоят из клеточной оболочки, которая отмежевывает содержимое клетки (протопласт) от окружающей его среды. Клеточная оболочка включает в себя достаточно жесткую и прочную клеточную стенку (снаружи) и тонкую, эластичную цитоплазматическую мембрану (внутри). Наружный слой клеточной стенки, представляющий собой пористую целлюлозную оболочку с присутствующим в ней лигнином, состоит из пектинов. Такие составляющие определяют прочность и жесткость растительной клетки, обеспечивают её форму, способствуют лучшей защите внутриклеточного содержимого (протопласта) от неблагоприятных условий. Составляющие цитоплазматической мембраны – белки и липиды. Как клеточная стенка, так и мембрана обладают полупроницаемыми способностями и выполняют транспортную функцию, пропуская внутрь клетки воду и необходимые для жизнедеятельности элементы питания, а также регулируя обмен веществ между клетками и со средой.


Протопласт растительной клетки включает в себя внутреннюю полужидкую среду мелкозернистой структуры (цитоплазму ), состоящую из воды, органических соединений и минеральных солей, в которой находятся ядро – главная часть клетки – и другие органоиды . Впервые описал жидкое содержимое клетки и назвал его (1825 – 1827 г.) чешский физиолог, микроскопист Ян Пуркине. Органоиды являются постоянными клеточными структурами, выполняющими специфические, предназначенные только им функции. Кроме того, они отличаются между собой строением и химическим составом. Различают немембранные органоиды (рибосомы, клеточный центр, микротрубочки, микрофиламенты), одномембранные (вакуоли, лизосомы, комплекс Гольджи, эндоплазматическая сеть) и двумембранные (пластиды, митохрондрии).


(одна или несколько) – важнейшая составляющая протопласта, характерная только для растительных клеток. В молодых клетках присутствуют, как правило, несколько небольших вакуолей, но по мере роста и старения клетки, мелкие вакуоли сливаются в одну большую (центральную) вакуоль. Она представляет собой ограниченный мембраной (тонопластом) резервуар с находящимся внутри него клеточным соком. Основной компонент клеточного сока – это вода (70 – 95%), в которой растворены органические и неорганические соединения: соли, сахара (фруктоза, глюкоза, сахароза), органические кислоты (щавелевая, яблочная, лимонная, уксусная и пр.), белки, аминокислоты. Все эти продукты являются промежуточным результатом метаболизма и временно накапливаются в вакуолях как запасные питательные вещества, чтобы в дальнейшем вторично участвовать в обменных процессах клетки. Также в клеточном соке присутствуют танины (дубильные вещества), фенолы, алкалоиды, антоцианы и различные пигменты, которые выводятся в вакуоль, изолируясь при этом от цитоплазмы. В вакуоли поступают и ненужные продукты жизнедеятельности клетки (отходы), например, щавелевокислый калий.




Благодаря вакуолям клетка обеспечивается запасами воды и питательных веществ (белков, жиров, витаминов, минеральных солей), а также в ней поддерживается осмотическое внутриклеточное давление (тургор). В вакуолях происходит расщепление старых белков и органелл.


Вторая отличительная особенность растительной клетки – присутствие в ней двумембранных органоидов – пластид . Открытие этих органоидов, их описание и классификация (1880 - 1883 г.) принадлежат немецким ученым – естествоиспытателю А. Шимперу и ботанику В. Мейеру. Пластиды представляют собой вязкие белковые тельца и разделяются на три основных типа: лейкопласты, хромопласты и хлоропласты. Все они под влиянием действия определенных факторов среды способны переходить из одного вида в другой.




Среди всех типов пластид наиболее важную роль выполняют хлоропласты : в них осуществляется процесс фотосинтеза. Эти органоиды отличаются зеленой окраской, что связано с наличием в их составе значительного количества хлорофилла – зеленого пигмента, поглощающего энергию солнечного света и синтезирующего органические вещества из воды и углекислого газа. Хлоропласты отмежевываются от цитоплазмы клетки двумя мембранами (внешней и внутренней) и имеют линзообразную овальную форму (длина составляет около 5 – 10 мкм, а ширина колеблется от 2 до 4 мкм). Кроме хлорофилла в хлоропластах присутствуют каротиноиды (вспомогательные пигменты оранжевого цвета). Количество хлоропластов в растительной клетке может варьироваться от 1 – 2-х (простейшие водоросли) до 15 – 20 штук (клетка листка высших растений).


Мелкие бесцветные пластиды лейкопласты встречаются в клетках тех органов растения, которые скрыты от действия солнечного света (корни или корневища, клубни, луковицы, семена). Форма их очень разнообразна (шаровидные, эллипсоидные, чашевидные, гантелевидные). Они осуществляют синтез питательных веществ (главным образом, крахмала, реже – жиров и белков) из моно- и дисахаридов. Под воздействием солнечных лучей лейкопласты имеют свойство превращаться в хлоропласты.


Хромопласты образуются в результате накопления каротиноидов и содержат значительное количество пигментов желтого, оранжевого, красного, бурого цвета. Они присутствуют в клетках плодов и лепестков, определяя их яркую окраску. Хромопласты бывают дисковидные, серповидные, зубчатые, шарообразные, ромбовидные, треугольные и пр. Участвовать в процессе фотосинтеза они не могут по причине отсутствия в них хлорофилла.



Двумембранные органоиды митохондрии представлены небольшими (несколько микронов в длину) образованиями чаще цилиндрической, но также гранулоподобной, нитевидной или округлой формы. Впервые обнаружены с помощью специального окрашивания и описаны немецким биологом Р. Альтманом как биопласты (1890 г.). Название митохондрий им дал немецкий патолог К. Бенда (1897 г.). Наружная мембрана митохондрии состоит из липидов и вдвое меньшего количества белковых соединений, она имеет гладкую поверхность. В составе внутренней мембраны преобладают белковые комплексы, а количество липидов не превышает третьей части от них. Внутренняя мембрана имеет складчатую поверхность, она образует гребневидные складки (кристы ), за счет которых поверхность ее значительно увеличивается. Пространство внутри митохондрии заполнено более плотным, чем цитоплазма вязким веществом белкового происхождения - матриксом. Митохондрии очень чувствительны к условиям окружающей среды, и под ее влиянием могут разрушаться или менять форму.




Они выполняют очень сложную физиологическую роль в процессах обмена веществ клетки. Именно в митохондриях происходит ферментативное расщепление органических соединений (жирных кислот, углеводов, аминокислот), и, опять-таки под воздействием ферментов синтезируются молекулы аденозинтрифосфорной кислоты (АТФ), являющейся универсальным источником энергии для всех живых организмов. Митохондрии синтезируют энергию и являются, в сущности, «энергетической станцией» клетки. Количество этих органоидов в одной клетке непостоянно и колеблется в пределах от нескольких десятков до нескольких тысяч. Чем активнее жизнедеятельность клетки, тем большее количество митохондрий она содержит. В процессе деления клетки митохондрии также способны делиться путем образования перетяжки. Кроме того, они могут сливаться между собой, образуя одну митохондрию.




Аппарат Гольджи назван так по имени его первооткрывателя, итальянского ученого К. Гольджи (1897 г.). Органоид расположен вблизи ядра и представляет собой мембранную структуру, имеющую вид многоярусных плоских дисковидных полостей, расположенных одна над другой, от которых ответвляются многочисленные трубчатые образования, завершающиеся пузырьками. Основная функция аппарата Гольджи – это удаление из клетки продуктов ее жизнедеятельности. Аппарат имеет свойство накапливать внутри полостей секреторные вещества, включающие пектины, ксилозу, глюкозу, рибозу, галактозу. Система мелких пузырьков (везикул ), расположенная на периферии этого органоида, выполняет внутриклеточную транспортную роль, перемещая синтезируемые внутри полостей полисахариды к периферии. Достигнув клеточной стенки или вакуоли, везикулы, разрушаясь, отдают им свое внутреннее содержимое. В аппарате Гольджи происходит также образование первичных лизосом.




были открыты бельгийским биохимиком Кристианом де Дювом (1955 г.). Они представляют собой небольшие тельца, ограниченные одной защитной мембраной и являются одной из форм везикул. Содержат более 40 различных гидролитических ферментов (гликозидаз, протеиназ, фосфатаз, нуклеаз, липаз и пр.), расщепляющих белки, жиры, нуклеиновые кислоты, углеводы, в связи с чем участвуют в процессах разрушения отдельных органоидов или участков цитоплазмы. Лизосомы выполняют важную роль в защитных реакциях и внутриклеточном питании.


Рибосомы – это очень мелкие немембранные органоиды близкой к шаровидной или эллипсоидной формы. Формируются в ядре клетки. Из-за маленьких размеров они воспринимаются как «зернистость» цитоплазмы. Некоторая часть их находится в свободном состоянии во внутренней среде клетки (цитоплазме, ядре, митохондриях, пластидах), остальные же прикреплены к наружным поверхностям мембран эндоплазматической сети. Количество рибосом в растительной клетке относительно невелико и составляет в среднем около 30000 шт. Рибосомы располагаются поодиночке, но иногда могут образовывать и группы – полирибосомы (полисомы). Этот органоид состоит из двух различных по величине частей, которые могут существовать порознь, но в момент функционирования органоида объединяются в одну структуру. Основная функция рибосом – синтез молекул белка из аминокислот.




Цитоплазму растительной клетки пронизывает огромное множество ультрамикроскопических жгутов, разветвленных трубочек, пузырьков, каналов и полостей, ограниченных трехслойными мембранами и образующих систему, известную как эндоплазматическая сеть (ЭПС ). Открытие этой системы принадлежит английскому ученому К. Портеру (1945 г.). ЭПС находится в контакте со всеми органоидами клетки и составляет вместе с ними единую внутриклеточную систему, осуществляющую обмен веществ и энергии, а также обеспечивающую внутриклеточный транспорт. Мембраны ЭПС с одной стороны связаны с наружной цитоплазматической мембраной, а с другой – с наружной оболочкой ядерной мембраны.




По своему строению ЭПС неоднородна, различают два её типа: гранулярную , на мембранах которой расположены рибосомы и агранулярную (гладкую) – без рибосом. В рибосомах гранулярной сети происходит синтез белка, который затем поступает внутрь каналов ЭПС, а на мембранах агранулярной сети синтезируются углеводы и липиды, также поступающие затем в каналы ЭПС. Таким образом, в каналах и полостях ЭПС происходит накопление продуктов биосинтеза, которые затем транспортируются к органоидам клетки. Кроме того, эндоплазматическая сеть разделяет цитоплазму клетки на изолированные отсеки, обеспечивая тем самым отдельную среду для различных реакций.

Ядро представляет собой самый крупный клеточный органоид, ограниченный от цитоплазмы чрезвычайно тонкой и эластичной двумембранной ядерной оболочкой и является наиважнейшей частью живой клетки. Открытие ядра растительной клетки принадлежит шотландскому ботанику Р. Брауну (1831 г.). В молодых клетках ядро размещено ближе к центру, в старых - смещается к периферии, что связано с образованием одной большой вакуоли, занимающей значительную часть протопласта. Как правило, в растительных клетках имеется лишь одно ядро, хотя случаются двухъядерные и многоядерные клетки. Химический состав ядра представлен белками и нуклеиновыми кислотами.



Ядро содержит значительное количество ДНК (дезоксирибонуклеиновой кислоты), выполняющей роль носителя наследственных свойств. Именно в ядре (в хромосомах) хранится и воспроизводится вся наследственная информация, которая определяет индивидуальность, особенности, функции, признаки клетки и всего организма вцелом. Кроме того, одним из наиболее важных предназначений ядра является управление обменом веществ и большинством процессов, происходящих в клетке. Информация, поступающая из ядра, определяет физиологическое и биохимическое развитие растительной клетки.

Внутри ядра находятся от одного до трех немембранных мелких телец округлой формы - ядрышек , погруженных в бесцветную, однородную, гелеобразную массу - ядерный сок (кариоплазму). Ядрышки состоят, главным образом, из белка; 5% их содержания составляет РНК (рибонуклеиновая кислота). Основная функция ядрышек - синтез РНК и формирование рибосом.