Как рассчитать расход тепловой энергии отопление. Расчет тепловой нагрузки на отопление здания: формула, примеры

Приложение 2 к статье В.И. Ливчака «Базовый уровень потребления энергетических ресурсов при установлении требований энергетической эффективности зданий», опубликованной в журнале "ЭНЕРГОСОВЕТ" 6/2013

В СП 30.13330 приводятся таблицы А.2 и А.3 нормируемых средних за год суточных расходов воды, в том числе горячей, л/сут, на 1 жителя в жилых домах и на 1 потребителя в зданиях общественного и производственного назначения. Для определения годового теплопотребления на горячее водоснабжение эти показатели должны быть пересчитаны на средние за отопительный период расчетные расходы воды.

1. Средний расчетный за сутки отопительного периода расход горячей воды на одного жителя в жилом здании g гв.ср.от.п.ж , л/сут, определяется по формуле:

g гв.ср.от.п.ж. = a гв.табл.А.2 ·365 / [ z от + a ·(351- z от )]; (П.2.1)

То же в общественном и производственном зданиях:

g гв.ср.от.п.н/ж = a гв.табл.А.3 ·365/351, (П.2.2)

где a гв.табл.А.2 или А.3 - расчетный средний за год суточный расход горячей воды на 1 жителя из табл. А.2 или 1 потребителя общественного и производственного здания из табл. А.3 СП 30.13330.2012;

365 - количество суток в году;

351 - продолжительность пользования централизованным горячим водоснабжением в течение года с учетом выключения на ремонт, сут.;

z от. - длительность отопительного периода;

a - коэффициент, учитывающий снижение уровня водоразбора в жилых зданиях в летний период a = 0,9, для остальных зданий a = 1.

2. Удельный среднечасовой за отопительный период расход тепловой энергии на горячее водоснабжение q гв , Вт/м 2 , определяется по формуле:

q гв = [ g гв.ср.от.п ·(t гв - t хв ) ·(1 + k hl ) r w c w ] / (3,6·24·А h ), (П.2.3)

где g гв.ср.от.п - то же, что в формуле (П.1) или (П.2);

t гв - температура горячей воды, принимаемая в местах водоразбора равной 60°C в соответствии с СанПиН 2.1.4.2496;

t хв - температура холодной воды, принимаемая равной 5°C;

k hl - коэффициент, учитывающий потери теплоты трубопроводами систем горячего водоснабжения; принимается согласно нижеследующей таблицы П.1, для ИТП жилых домов с централизованной системой гвс k hl = 0,2; для ИТП общественных зданий и для жилых домов с квартирными водонагревателями k hl = 0,1;

r w - плотность воды, равная 1 кг/л;

c w - удельная теплоемкость воды, равная 4,2 Дж/(кг·°С);

А h - норма общей площади квартир на 1 жителя или полезной площади помещений на 1 пользователя в общественных и производственных зданиях, принятое значение в зависимости от назначения здания приведено в табл.П.2.2.

Таблица П.2.1. Значение коэффициента k hl , учитывающего потери теплоты трубопроводами систем горячего водоснабжения

Таблица П.2.2. Нормы суточного расхода горячей воды потребителями и удельной часовой величины тепловой энергии на ее нагрев в средние за отопительный период сутки, а также значения удельного годового расхода тепловой энергии на горячее водоснабжение, исходя из нормативной площади на 1-го измерителя для центрального региона с z от. = 214 суток.

Потребители

Изме-ри-тель

Норма расхода горячей воды из табл.А.2 СП 30. 13330. 2012 за год a гвс , л/сутки

Норма общей, полез-ной площа-ди на 1 изме-ритель S а , м 2 /чел.

Удельный средне-часовой расход тепловой энергии на гвс за отопител. период q гв, Вт/м 2

Удельный годовой расход тепловой энергии на гвс q гв. год, кВт·ч/м 2 общей площади

Жилые дома независимо от этаж-ности с централизованным горя-чим водоснабжением оборудован-ные умывальниками, мойками и ваннами, с квартирными регуля-торми давления КРД

То же с умывальниками, мойками и душем с КРД

Жилые дома с водопроводом, ка-нализацией и ваннами с газовыми водонагревателями

То же с водонагревателями, рабо-тающими на твердом топливе

Гостиницы и пансионаты с ван-нами во всех отдельных номерах

То же с душами во всех отдельных номерах

Больницы с санитарными узла-ми, приближенными к палатам

1боль-ной

То же с общими ваннами и душами

Поликлиники и амбулатории

(10 м 2 на одного медработника, работа в 2 смены и 6 пациентов на 1 работника)

1боль-ной в смену

1раб.в смену

Детские ясли-сады с дневным пребыванием детей и столовыми, работающими на полуфабрикатах

1ребе-нок

То же с круглосуточным пребыванием детей

То же со столовыми, работаю-щими на сырье, и прачечными

Общеобразовательные школы с

душевыми при гимнастических за -лах и столовыми на п/фабрикатах

1учащ.1пре-пода-ватель

Физкультурно-оздоровительные комплексы со столовыми на полуфабрикатах

Кинотеатры, залы собраний // театры, клубы и досугово-развлекательные учреждения

1 зри-тель

Административные здания

1работающий

Предприятияобщественного пи-тания для приготовления пищи, реализуемой в обеденном зале

1блю-до на 1 место

Магазины продовольственные

1работающ.

Магазины промтоварные

Производственные цеха и техно-парки с тепловыдел. менее 84 кДж

1работающ.

Склады

Примечания: * - над чертой и без черты базовые значения, под чертой с учетом оснащенности квартир водосчетчиками и из условия, что при квартирном учете происходит 40% сокращение тепловодопотребления. В зависимости от % оснащенности квартир водосчетчиками: q гв.в/сч год = q гв. год · (1-0,4· N кв.в/сч / N кв );

где q гв. год - по формуле (П.2.4); N кв - количество квартир в доме; N кв.в/сч - количество квартир, в которых установлены водосчетчики.

1. Нормы расхода воды в графе 3 установлены для I и II климатических районов, для III и IV районов следует принимать с учетом коэффициента из табл. А.2 СП 30.13330.

2. Нормы расхода воды установлены для основных потребителей и включают все дополнительные расходы (обслуживающим персоналом, посетителями, душевыми для обслуживающего персонала, на уборку помещений и т.п.). Потребление воды в групповых душевых и на ножные ванны в бытовых помещениях производственных предприятий, на приготовление пищи на предприятиях общественного питания, а также на водолечебные процедуры в водолечебницах и приготовление пищи, входящих в состав больниц, санаториев и поликлиник, надлежит учитывать дополнительно.

3. Для водопотребителей гражданских зданий, сооружений и помещений, не указанных в таблице, нормы расхода воды следует принимать как для потребителей, аналогичных по характеру водопотребления.

4. На предприятиях общественного питания количество блюд (^), реализуемых за один рабочий день, допускается определять по формуле U = 2,2 ·n·m n ·T·ψ ;

где n - количество посадочных мест;

m n - количество посадок, принимаемых для столовых открытого типа и кафе - 2; для столовых студенческих и при промышленных предприятиях - 3; для ресторанов -1,5;

T - время работы предприятия общественного питания, ч;

ψ - коэффициент неравномерности посадок на протяжении рабочего дня, принимаемый: для столовых и кафе - 0,45; для ресторанов - 0,55; для других предприятий общественного питания при обосновании допускается принимать 1,0.

5. В настоящей таблице удельный часовой норматив тепловой энергии q hw , Вт/м 2 на нагрев нормы расхода горячей воды в средние сутки отопительного периода с учетом потерь теплоты в трубопроводах системы и полотенцесушителях соответствует указанной в соседнем столбце принятой величине общей площади квартиры в жилом доме на одного жителя или полезной площади помещений в общественном здании на одного больного, работающего, учащегося или ребенка, S а , м 2 /чел.. Если в действительности окажется иная величина общей или полезной площади на одного человека, S а. i , то удельный норматив тепловой энергии данного конкретного дома q hw . i следует пересчитать по следующей зависимости: q hw . i = q hw . · S а / S а. i

| скачать бесплатно Методика расчета удельного годового расхода тепловой энергии на горячее водоснабжение жилых и общественных зданий , В.И. Ливчак,

Порядок расчета отопления в жилом фонде зависит от наличия приборов учета и от того, каким способом ими оборудован дом. Существует несколько вариантов комплектации счетчиками многоквартирных жилых домов, и согласно которым, производится расчет тепловой энергии:

  1. наличие общедомового счетчика, при этом квартиры и нежилые помещения приборами учетами не оборудованы.
  2. расходы на отопление контролирует общедомовой прибор, а также все или некоторые помещения оборудованы учетными приборами.
  3. общедомовой прибор фиксации потребления и расхода тепловой энергии отсутствует.

Перед тем как рассчитать количество потраченных гигакалорий, необходимо выяснить наличие или отсутствие контроллеров на доме и в каждом отдельном помещении, включая нежилые. Рассмотрим все три варианта расчета тепловой энергии, к каждому из которых разработана определенная формула (размещены на сайте государственных уполномоченных органов).

Вариант 1

Итак, дом оборудован контрольным прибором, а отдельные помещения остались без него. Здесь необходимо брать во внимание две позиции: подсчет гкал на отопление квартиры, затраты тепловой энергии на общедомовые нужды (ОДН).

В данном случае используется формула №3, которая основана на показаниях общего учетного прибора, площади дома и метраже квартиры.

Пример вычислений

Будем считать, что контроллер зафиксировал расходы дома на отопление в 300 гкал/месяц (эти сведения можно узнать из квитанции или обратившись в управляющую компанию). К примеру, общая площадь дома, которая состоит из суммы площадей всех помещений (жилых и нежилых), составляет 8000 м² (также можно узнать эту цифру из квитанции или от управляющей компании).

Возьмем площадь квартиры в 70 м² (указана в техпаспорте, договоре найма или регистрационном свидетельстве). Последняя цифра, от которой зависит расчет оплаты за потребленную теплоэнергию, это тариф, установленный уполномоченными органами РФ (указан в квитанции или выяснить в домоуправляющей компании). На сегодняшний день тариф на отопление равен 1 400 руб/гкал.


Подставляя данные в формулу №3, получим следующий результат: 300 х 70 / 8 000 х 1 400 = 1875 руб.

Теперь можно переходить ко второму этапу учета расходов на отопление, потраченных на общие нужды дома. Здесь потребуется две формулы: поиск объема услуги (№14) и плата за потребление гигакалорий в рублях (№10).

Чтобы правильно определить объем отопления в данном случае, потребуется суммирование площади всех квартир и помещений, предоставленных для общего пользования (сведения предоставляет управляющая компания).

К примеру, у нас имеется общий метраж в 7000 м² (включая квартиры, офисы, торговые помещения.).

Приступим к вычислению оплаты за расход тепловой энергии по формуле №14: 300 х (1 – 7 000 / 8 000) х 70 / 7 000 = 0,375 гкал.


Используя формулу №10, получаем: 0,375 х 1 400 = 525, где:

  • 0,375 – объем услуги за подачу тепла;
  • 1400 р. – тариф;
  • 525 р. – сумма платежа.

Суммируем результаты (1875 + 525) и выясняем, что оплата за расход тепла составит 2350 руб.

Вариант 2

Теперь проведем расчет платежей в тех условиях, когда дом оснащен общим учетным прибором на отопление, а также индивидуальными счетчиками снабжена часть квартир. Как и в предыдущем случае, подсчет будет проводиться по двум позициям (тепловые энергозатраты на жилье и ОДН).

Нам понадобится формула №1 и №2 (правила начислений согласно показаниям контроллера или с учетом нормативов потребления тепла для жилых помещений в гкал). Вычисления будут проводиться относительно площади жилого дома и квартиры из предыдущего варианта.

  • 1,3 гигакалорий – показания индивидуального счетчика;
  • 1 1820 р. – утвержденный тариф.

  • 0,025 гкал – нормативный показатель расхода тепла на 1 м² площади в квартире;
  • 70 м² – метраж квартиры;
  • 1 400 р. – тариф на тепловую энергию.

Как становится понятно, при таком варианте сумма платежа будет зависеть от наличия устройства учета в вашей квартире.

Формула №13: (300 – 12 – 7 000 х 0,025 – 9 – 30) х 75 / 8 000 = 1,425 гкал, где:

  • 300 гкал – показания общедомового счетчика;
  • 12 гкал – количество тепловой энергии, использованной на обогрев нежилых помещений;
  • 6 000 м² – сумма площади всех жилых помещений;
  • 0,025 – норматив (потребление тепловой энергии для квартир);
  • 9 гкал – сумма показателей со счетчиков всех квартир, которые оборудованы приборами учета;
  • 35 гкал – количество тепла, затраченного на подачу горячей воды при отсутствии ее централизованной подачи;
  • 70 м² – площадь квартиры;
  • 8 000 м² – общая площадь (все жилые и нежилые помещения в доме).

Обратите внимание, что данный вариант включает только реальные объемы потребляемой энергии и если ваш дом снабжен централизованной подачей горячей воды, то объем тепла, затраченного на нужды горячего водоснабжения, не учитывается. Это же касается и нежилых помещений: если они отсутствуют в доме, то и в расчет включены не будут.

  • 1,425 гкал – количество тепла (ОДН);


  1. 1820 + 1995 = 3 815 руб. - с индивидуальным счетчиком.
  2. 2 450 + 1995 = 4445 руб. - без индивидуального устройства.

Вариант 3

У нас остался последний вариант, в ходе которого мы рассмотрим ситуацию, когда на доме отсутствует счетчик тепловой энергии. Расчет, как и в предыдущих случаях, проведем по двум категориям (тепловые энергозатраты на квартиру и ОДН).

Выведение суммы на отопление, проведем при помощи формул №1 и №2 (правила о порядке расчета тепловой энергии с учетом показаний индивидуальных учетных приборов или согласно установленным нормативам для жилых помещений в гкал).

Формула №1: 1,3 х 1 400 = 1820 руб., где:

  • 1,3 гкал – показания индивидуального счетчика;
  • 1 400 р. – утвержденный тариф.

Формула №2: 0,025 х 70 х 1 400 = 2 450 руб., где:

  • 1 400 р. – утвержденный тариф.


Как и во втором варианте, платеж будет зависеть от того, оборудовано ли ваше жилье индивидуальным счетчиком на тепло. Теперь необходимо выяснить объем теплоэнергии, которая была израсходована на общедомовые нужды, и выполнять это нужно по формуле №15 (объем услуги на ОДН) и №10 (сумма за отопление).

Формула №15: 0,025 х 150 х 70 / 7000 = 0,0375 гкал, где:

  • 0,025 гкал – нормативный показатель расхода тепла на 1 м² жилой площади;
  • 100 м² – сумма площади помещений, предназначенных для общедомовых нужд;
  • 70 м² – общая площадь квартиры;
  • 7 000 м² – общая площадь (всех жилые и нежилые помещения).

Формула №10: 0,0375 х 1 400 = 52,5 руб., где:

  • 0,0375 – объем тепла (ОДН);
  • 1400 р. – утвержденный тариф.


В результате проведенных подсчетов мы выяснили, что полная оплата за отопление составит:

  1. 1820 + 52,5 = 1872,5 руб. – с индивидуальным счетчиком.
  2. 2450 + 52,5 = 2 502,5 руб. – без индивидуального счетчика.

В приведенных выше расчетах платежей за отопление были использованы данные о метраже квартиры, дома, а также о показателях счетчика, которые могут существенно отличаться от тех, которые есть у вас. Все что вам нужно, это подставить свои значения в формулу и произвести окончательный расчет.

Описание:

Одним из ключевых направлений повышения энергоэффективности экономики является снижение энергопотребления строящихся и эксплуатируемых зданий. В статье рассмотрены основные показатели, влияющие на определение годовых расходов энергии на эксплуатацию здания.

Определение годовых расходов энергии на эксплуатацию зданий

А. Л. Наумов , генеральный директор ООО «НПО Термэк»

Г. А. Смага , технический директор АНО «РУСДЕМ»

Е. О. Шилькрот , зав. лабораторией ОАО «ЦНИИПромзданий»

Одним из ключевых направлений повышения энергоэффективности экономики является снижение энергопотребления строящихся и эксплуатируемых зданий. В статье рассмотрены основные показатели, влияющие на определение годовых расходов энергии на эксплуатацию здания.

До настоящего времени в проектной практике, как правило, определялись только расчетные максимальные нагрузки на системы тепло- и электропотребления, годовые расходы энергии на комплекс систем инженерного обеспечения зданий не нормировался. Расчет расходов тепла за отопительный период носил справочно-рекомендательный характер .

Предпринимались попытки контролировать на проектной стадии годовые расходы тепловой энергии на системы отопления, вентиляции, горячего водоснабжения .

В 2009 году для Москвы был разработан Стандарт АВОК «Энергетический паспорт проекта здания к СНиП 23-02, МГСН 2.01 и МГСН 4.19» .

В этом документе в значительной степени удалось устранить недочеты предыдущих методик определения удельных энергетических показателей здания за отопительный период, но вместе с тем, с нашей точки зрения, и он нуждается в уточнениях.

Так, использование в качестве аргумента при определении удельных затрат тепла комплекса градусо-сутки представляется не вполне корректным, а при определении удельных затрат электроэнергии – нелогичным. Трансмиссионные потери тепла в районах с различной температурой наружного воздуха примерно одинаковы, так как корректируются величиной сопротивления теплопередаче. Затраты тепла на нагрев вентиляционного воздуха напрямую зависят от температуры наружного воздуха. Целесообразно устанавливать показатели удельных затрат энергии в расчете на 1 м 2 в зависимости от климатической зоны.

Для всех жилых и общественных зданий при определении тепловых нагрузок на системы отопления и вентиляции за отопительный период принимается одинаковая (для заданного региона) продолжительность отопительного периода, средняя температура наружного воздуха и соответствующий показатель градусо-суток. Продолжительность отопительного периода определяется для теплоснабжающих организаций из условия установления среднесуточной температуры наружного воздуха за 5-дневный период +8 ˚C, а для ряда медицинских и образовательных учреждений +10 ˚C. По многолетней практике эксплуатации большинства зданий в прошлом веке при такой наружной температуре уровень внутренних тепловыделений и инсоляции не позволял снижаться температуре воздуха в помещениях ниже +18…+20 ˚C.

С тех пор многое изменилось: значительно выросли требования к теплозащите наружных ограждений зданий, выросла бытовая энергоемкость домохозяйств, существенно возросла энерговооруженность рабочих мест персонала общественных зданий.

Очевидно, что температура в помещениях +18…+20 ˚C обеспечивается в это время внутренними тепловыделениями и инсоляцией. Запишем следующее соотношение:

Здесь Q вн, t в, t н, ΣR огр – соответственно величина внутренних тепловыделений и инсоляции, температура внутреннего и наружного воздуха, средневзвешенное по площади сопротивление теплопередаче наружных ограждений.

При изменении значений Q вн и ΣR огр получим (относительно принимаемых в ):

(2)

Поскольку значения Q вн и ΣR огр увеличились, в современных условиях величина tн уменьшится, что вызовет сокращение продолжительности отопительного периода.

Как следствие, в ряде жилых новостроек фактические сроки потребности в отоплении сместились к наружной температуре +3…+5 ˚C, а в офисах с напряженным графиком работы к 0…+2 ˚C и даже ниже. Это означает, что системы отопления с адекватной системой регулирования и автоматизации до наступления соответствующей температуры наружного воздуха будут блокировать подачу теплоты в здание.

Можно ли пренебречь этими обстоятельствами? Сокращение продолжительности отопительного периода по данным метеонаблюдений в Москве за 2008 год при переходе от «стандартной» наружной температуры +8 ˚C с 216 суток снижается при +4 ˚C до 181 суток, при +2 ˚C до 128 суток, а при 0 ˚C до 108 суток. Показатель градусо-суток уменьшается соответственно до 81, 69 и 51 % от базового уровня при +8 ˚C.

В таблице приведены обработанные данные метеонаблюдений за 2008 год.

Изменение годовой нагрузки на систему отопления
в зависимости от продолжительности отопительного периода
Температура наружного воздуха по окончании отопительного периода здания, о С Продолжительность отопительного периода, сутки Показатель ГС
+10 252 4 189 110
+8 216 3 820 100
+6 202 3 370 88
+4 181 3 091 81
+2 128 2 619 69
0 108 1 957 51
-2 72 1 313 34
-4 44 1 080 28
-6 23 647 17

Не трудно показать на примере вероятные ошибки недоучета фактической продолжительности отопительного периода. Воспользуемся примером для высотного здания, приведенным в Стандарте АВОК:

Теплопотери через наружные ограждающие конструкции за отопительный период равны 7 644 445 кВт·ч;

Теплопоступления за отопительный период составят 2 614 220 кВт·ч;

Внутренние тепловыделения за отопительный период при удельном показателе 10 Вт/м 2 составят 7 009 724 кВт·ч/м 2 .

Приняв, что система вентиляции работает с подпором воздуха, а температура приточного воздуха равна нормируемой температуре воздуха в помещениях, нагрузка на систему отопления будет складываться из баланса теплопотерь, внутренних теплопоступлений и инсоляции по формуле, предложенной в стандарте:

где Q ht – теплопотери здания;

Q int – теплопоступления от инсоляции;

Q z – внутренние тепловыделения;

ν, ς, β – поправочные коэффициенты: ν = 0,8; ς = 1;

Подставив наши значения в формулу (3), получим Q i v = 61 822 кВт·ч.

Другими словами, по расчетной модели стандарта годовая нагрузка на систему отопления отрицательная и отапливать здание не нужно.

На самом деле это не так, температура наружного воздуха, при которой наступает баланс трансмиссионных теплопотерь и внутренних теплопоступлений с учетом радиации, равна около +3 ˚C. Трансмиссионные теплопотери в этот период составят 4 070 000 кВт·ч, а внутренние теплопоступления с понижающим коэффициентом 0,8 – 3 200 000 кВт·ч. Нагрузка на систему отопления составит 870 000 кВт·ч.

В подобном уточнении нуждается и расчет годового потребления тепловой энергии в жилых зданиях, что нетрудно показать на примере.

Определим, при какой температуре наружного воздуха в весенний и осенний периоды наступает баланс теплопотерь здания, включая естественную вентиляцию и теплопоступления за счет инсоляции и бытовых тепловыделений. Исходные данные взяты из примера для 20-этажного односекционного дома из энергетического паспорта :

Поверхность наружных ограждений – 10 856 м 2 ;

Приведенный коэффициент теплопередачи – 0,548 Вт/(м 2 ·˚C);

Внутренние тепловыделения в жилой зоне – 15,6 Вт/м 2 , в общественной – 6,07 Вт/м 2 ;

Кратность воздухообмена – 0,284 1/ч;

Величина воздухообмена – 12 996 м 3 /ч.

Расчетная среднесуточная величина инсоляции в апреле составит 76 626 Вт, в сентябре-октябре – 47 745 Вт. Расчетная величина среднесуточных бытовых тепловыделений – 84 225 Вт.

Таким образом, баланс теплопотерь и теплопоступлений весной наступит при температуре наружного воздуха +4,4 ˚C, а осенью при +7,2 ˚C.

При этих значениях температуры начала и окончания отопительного периода его продолжительность заметно уменьшится. Соответственно, показатель градусо-суток и годовые расходы теплоты на отопление и вентиляцию по отношению к «стандартному подходу» следует понизить примерно на 12 %.

Откорректировать расчетную модель по фактической продолжительности отопительного периода возможно с использованием следующего алгоритма:

Для заданного региона путем статистической обработки метеоданных определяется зависимость от наружной температуры продолжительности отопительного периода и показателя градусо-суток (см. табл.).

На основе баланса трансмиссионных теплопотерь с учетом инфильтрации воздуха и внутренних теплопоступлений с учетом инсоляции определяется «балансовая» температура наружного воздуха, которая задает границы отопительного периода. При определении теплопоступлений за счет инсоляции проводятся итерации, так как интенсивность падающей солнечной радиации меняется в зависимости от периодов года.

По метеотаблице определяются фактическая продолжительность отопительного периода и показатель градусо-суток. Далее, по известным формулам определяются трансмиссионные теплопотери, теплопоступления и нагрузка на систему отопления за отопительный период.

Нуждается в корректировке включение в основную расчетную формулу стандарта (1) в состав «общих теплопотерь здания через ограждающую оболочку здания» расходов теплоты на нагрев приточного воздуха по следующим соображениям:

Продолжительность периода работы системы отопления и теплоснабжения систем вентиляции в общем случае не совпадает. В некоторых зданиях теплоснабжение систем вентиляции обеспечивается до температуры наружного воздуха +14…+16 ˚C. В ряде случаев и в холодный период года необходимо определять тепловые нагрузки на вентиляцию не по «явному» теплу, а с учетом энтальпийного теплообмена. Работа воздушно-тепловых завес также не всегда вписывается в отопительный режим.

- «Потребительский подход», устанавливающий баланс между уровнем теплозащиты ограждений и нагрузками на отопление, не корректно распространять на системы вентиляции. Теплоснабжение систем механической вентиляции напрямую не связано с уровнем теплозащиты ограждений.

Распространять коэффициент β, «учитывающий дополнительное теплопотребление системы отопления, связанное с дискретностью номинального теплового потока номенклатурного ряда отопительных приборов…», на теплопотребление систем механической вентиляции также неправомерно.

Откорректировать расчетную модель возможно, обеспечив раздельный расчет тепловых нагрузок на системы отопления и механической вентиляции. Для гражданских зданий с естественной вентиляцией расчетная модель может быть сохранена.

Основными направлениями энергосбережения в системах механической вентиляции являются утилизация теплоты вытяжного воздуха для нагрева приточного и системы с переменным расходом воздуха.

Стандарт следовало бы дополнить соответствующими показателями снижения тепловых нагрузок, а также разделом, связанным с определением энергетических годовых нагрузок на системы холодоснабжения и кондиционирования воздуха. Алгоритм расчета этих нагрузок такой же, как и для отопления, но по фактической продолжительности периода работы системы кондиционирования воздуха и показателя градусо-суток (энтальпийных суток) в переходный и теплый периоды года. Потребительский подход для зданий с кондиционированием воздуха рекомендуется расширить оценкой уровня теплозащиты наружных ограждений не только для холодного, но и для теплого периода года .

Целесообразно в стандарте регламентировать годовое потребление электрической энергии системами инженерного обеспечения зданий:

Привод насосов в системах отопления, водоснабжения, холодоснабжения;

Привод вентиляторов в системах вентиляции и кондиционирования воздуха;

Привод холодильных машин;

Расходы электроэнергии на освещение.

Методических затруднений определение годовых затрат электрической энергии не вызывает.

Нуждается в уточнении показатель компактности здания, представляющий собой размерную величину – отношение общей поверхности наружных ограждений к объему здания (1/м). По логике стандарта, чем ниже этот показатель, тем выше энергоэффективность здания. Если сравнить двухэтажные здания размерами в плане 8 × 8 м, одно высотой 8 м, а второе 7 м, то первое будет иметь показатель компактности 0,75 (1/м), а второе худший – 0,786 (1/м).

В то же время теплопотребляющая поверхность первого здания будет на 24 м 2 больше при одной и той же полезной площади и оно будет более энергоемким.

Предлагается ввести другой безразмерный показатель компактности здания – отношение полезной отапливаемой площади здания к общей площади наружных ограждений. Эта величина корреспондируется и с нормативами стандарта (энергоемкость на 1 м 2 площади), и с другими удельными показателями (площадь, приходящаяся на одного жителя, сотрудника, внутренние удельные тепловыделения и т. п.). Кроме того, она однозначно характеризует энергоемкость объемно-планировочных решений – чем ниже этот показатель, тем выше энергоэффективность:

K з = S о / S oбщ, (4)

где S общ – общая площадь наружных теплотеряющих ограждений;

S o – отапливаемая площадь здания.

Принципиально важно ввести в энергетический паспорт возможность учета характеристик проекта по регулированию, автоматизации и управлению инженерными системами:

Автоматика перевода систем отопления в дежурный режим;

Алгоритм управления системами вентиляции с изменением температуры приточного воздуха и его расхода;

Динамика систем холодоснабжения, в том числе с использованием аккумуляторов холода;

Управляемые системы освещения с датчиками присутствия и освещенности.

У проектировщиков должен быть инструмент оценки влияния энергосберегающих решений на показатели энергоемкости здания.

Целесообразно включить в состав энергетического паспорта раздел по контролю соответствия фактической энергоемкости здания проектным показателям. Это нетрудно выполнить, основываясь на интегральных показателях домового коммерческого учета тепловой и электрической энергии, расходуемой на системы инженерного обеспечения, с использованием фактических данных метеонаблюдений за год.

Для жилых зданий целесообразно внутренние тепловыделения относить к общей площади квартиры, а не к жилой. В типовых проектах соотношение жилой площади и общей меняется в широких пределах, а в распространенных зданиях со «свободной планировкой» оно вообще не определено.

Для общественных зданий целесообразно ввести показатель теплонапряженности режима эксплуатации и ранжировать его, например, на три категории в зависимости от недельного режима работы, энерговооруженности рабочего места и площади, приходящейся на одного сотрудника, и, соответственно, задавать средние тепловыделения. Имеется достаточная статистика по тепловыделениям оргтехники.

Если этот показатель не регламентировать, то введением произвольных коэффициентов использования оргтехники 0,4, неодновременности заполнения помещения 0,7 можно достичь в офисных помещениях показателя внутренних тепловыделений 6 Вт/м 2 (в стандарте – пример высотного здания). В разделе холодоснабжения этого проекта расчетная потребность в холоде не менее 100 Вт/м 2 , а осредненное значение внутренних тепловыделений задано на уровне 25–30 Вт/м 2 .

В Федеральном законе № 261-ФЗ «Об энергосбережении и повышении энергетической эффективности» поставлена задача маркировки энергоэффективности зданий как на стадии проектирования, так и в процессе эксплуатации.

Следовало бы в последующих редакциях стандарта учесть результаты дискуссий в НП «АВОК» об учете внутренних тепловыделений в жилых зданиях в расчетном режиме (определении установочной мощности систем отопления) и о настройке термостатов на температуру внутреннего воздуха в квартирах как оборудованных, так и не оборудованных поквартирными приборами учета.

Наработки специалистов НП «АВОК» – Ю. А. Табунщикова, В. И. Ливчака, Е. Г. Малявиной, В. Г. Гагарина, авторов статьи – позволяют рассчитывать на создание в ближайшем времени методики определения энергоемкости зданий, адекватно учитывающей основные факторы воздушно-теплового режима.

НП «АВОК» приглашает к сотрудничеству всех заинтересованных специалистов для решения этой актуальной задачи.

Литература

1. Рысин С. А. Вентиляционные установки машиностроительных заводов: Справочник. – М. : Машгиз, 1961.

2. Справочник по теплоснабжению и вентиляции в гражданском строительстве. – Киев: Госстройиздат, 1959.

3. МГСН 2.01-99. Энергосбережение в зданиях.

4. СНиП 23-02-2003. Тепловая защита зданий.

5. МГСН 4.19-2005. Временные нормы и правила проектирования многофункциональных высотных зданий и зданий-комплексов в городе Москве.

При будь то промышленное строение или жилое здание, нужно провести грамотные расчеты и составить схему контура отопительной системы. Особое внимание на этом этапе специалисты рекомендуют обращать на расчёт возможной тепловой нагрузки на отопительный контур, а также на объем потребляемого топлива и выделяемого тепла.

Тепловая нагрузка: что это?

Под этим термином понимают количество отдаваемой теплоты. Проведенный предварительный расчет тепловой нагрузки позволить избежать ненужных расходов на приобретение составляющих отопительной системы и на их установку. Также этот расчет поможет правильно распределить количество выделяемого тепла экономно и равномерно по всему зданию.

В эти расчеты заложено множество нюансов. Например, материал, из которого выстроено здание, теплоизоляция, регион и пр. Специалисты стараются принять во внимание как можно больше факторов и характеристик для получения более точного результата.

Расчет тепловой нагрузки с ошибками и неточностями приводит к неэффективной работе отопительной системы. Случается даже, что приходится переделывать участки уже работающей конструкции, что неизбежно влечет к незапланированным тратам. Да и жилищно-коммунальные организации ведут расчет стоимости услуг на базе данных о тепловой нагрузке.

Основные факторы

Идеально рассчитанная и сконструированная система отопления должна поддерживать заданную температуру в помещении и компенсировать возникающие потери тепла. Рассчитывая показатель тепловой нагрузки на систему отопления в здании нужно принимать к сведению:

Назначение здания: жилое или промышленное.

Характеристику конструктивных элементов строения. Это окна, стены, двери, крыша и вентиляционная система.

Размеры жилища. Чем оно больше, тем мощнее должна быть система отопления. Обязательно нужно учитывать площадь оконных проемов, дверей, наружных стен и объем каждого внутреннего помещения.

Наличие комнат специального назначения (баня, сауна и пр.).

Степень оснащения техническими приборами. То есть, наличие горячего водоснабжения, системы вентиляции, кондиционирование и тип отопительной системы.

Для отдельно взятого помещения. Например, в комнатах, предназначенных для хранения, не нужно поддерживать комфортную для человека температуру.

Количество точек с подачей горячей воды. Чем их больше, тем сильнее нагружается система.

Площадь остекленных поверхностей. Комнаты с французскими окнами теряют значительное количество тепла.

Дополнительные условия. В жилых зданиях это может быть количество комнат, балконов и лоджий и санузлов. В промышленных - количество рабочих дней в календарном году, смен, технологическая цепочка производственного процесса и пр.

Климатические условия региона. При расчёте теплопотерь учитываются уличные температуры. Если перепады незначительны, то и на компенсацию будет уходить малое количество энергии. В то время как при -40 о С за окном потребует значительных ее расходов.

Особенности существующих методик

Параметры, включаемые в расчет тепловой нагрузки, находятся в СНиПах и ГОСТах. В них же есть специальные коэффициенты теплопередачи. Из паспортов оборудования, входящего в систему отопления, берутся цифровые характеристики, касаемые определенного радиатора отопления, котла и пр. А также традиционно:

Расход тепла, взятый по максимуму за один час работы системы отопления,

Максимальный поток тепла, исходящий от одного радиатора,

Общие затраты тепла в определенный период (чаще всего - сезон); если необходим почасовой расчет нагрузки на тепловую сеть, то расчет нужно вести с учетом перепада температур в течение суток.

Произведенные расчеты сопоставляют с площадью тепловой отдачи всей системы. Показатель получается достаточно точный. Некоторые отклонения случаются. Например, для промышленных строений нужно будет учитывать снижение потребления тепловой энергии в выходные дни и праздничные, а в жилых помещениях - в ночное время.

Методики для расчета систем отопления имеют несколько степеней точности. Для сведения погрешности к минимуму необходимо использовать довольно сложные вычисления. Менее точные схемы применяются если не стоит цель оптимизировать затраты на отопительную систему.

Основные способы расчета

На сегодняшний день расчет тепловой нагрузки на отопление здания можно провести одним из следующих способов.

Три основных

  1. Для расчета берутся укрупненные показатели.
  2. За базу принимаются показатели конструктивных элементов здания. Здесь будет важен и расчет идущего на прогрев внутреннего объема воздуха.
  3. Рассчитываются и суммируются все входящие в систему отопления объекты.

Один примерный

Есть и четвертый вариант. Он имеет достаточно большую погрешность, ибо показатели берутся очень усредненные, или их недостаточно. Вот эта формула - Q от = q 0 * a * V H * (t ЕН - t НРО), где:

  • q 0 - удельная тепловая характеристика здания (чаще всего определяется по самому холодному периоду),
  • a - поправочный коэффициент (зависит от региона и берется из готовых таблиц),
  • V H - объем, рассчитанный по внешним плоскостям.

Пример простого расчета

Для строения со стандартными параметрами (высотой потолков, размерами комнат и хорошими теплоизоляционными характеристиками) можно применить простое соотношение параметров с поправкой на коэффициент, зависящий от региона.

Предположим, что жилой дом находится в Архангельской области, а его площадь - 170 кв. м. Тепловая нагрузка будет равна 17 * 1,6 = 27,2 кВт/ч.

Подобное определение тепловых нагрузок не учитывает многих важных факторов. Например, конструктивных особенностей строения, температуры, число стен, соотношение площадей стен и оконных проёмов и пр. Поэтому подобные расчеты не подходят для серьёзных проектов системы отопления.

Зависит он от материала, из которого они изготовлены. Чаще всего сегодня используются биметаллические, алюминиевые, стальные, значительно реже чугунные радиаторы. Каждый из них имеет свой показатель теплоотдачи (тепловой мощности). Биметаллические радиаторы при расстоянии между осями в 500 мм, в среднем имеют 180 - 190 Вт. Радиаторы из алюминия имеют практически такие же показатели.

Теплоотдача описанных радиаторов рассчитывается на одну секцию. Радиаторы стальные пластинчатые являются неразборными. Поэтому их теплоотдача определяется исходя из размера всего устройства. Например, тепловая мощность двухрядного радиатора шириной 1 100 мм и высотой 200 мм будет 1 010 Вт, а панельного радиатора из стали шириной 500 мм, а высотой 220 мм составит 1 644 Вт.

В расчет радиатора отопления по площади входят следующие базовые параметры:

Высота потолков (стандартная - 2,7 м),

Тепловая мощность (на кв. м - 100 Вт),

Одна внешняя стена.

Эти расчеты показывают, что на каждые 10 кв. м необходимо 1 000 Вт тепловой мощности. Этот результат делится на тепловую отдачу одной секции. Ответом является необходимое количество секций радиатора.

Для южных районов нашей страны, так же как и для северных, разработаны понижающие и повышающие коэффициенты.

Усредненный расчет и точный

Учитывая описанные факторы, усредненный расчет проводится по следующей схеме. Если на 1 кв. м требуется 100 Вт теплового потока, то помещение в 20 кв. м должно получать 2 000 Вт. Радиатор (популярный биметаллический или алюминиевый) из восьми секций выделяет около Делим 2 000 на 150, получаем 13 секций. Но это довольно укрупненный расчет тепловой нагрузки.

Точный выглядит немного устрашающе. На самом деле ничего сложного. Вот формула:

Q т = 100 Вт/м 2 × S(помещения)м 2 × q 1 × q 2 × q 3 × q 4 × q 5 × q 6 × q 7 , где:

  • q 1 - тип остекления (обычное =1.27, двойное = 1.0, тройное = 0.85);
  • q 2 - стеновая изоляция (слабая, или отсутствующая = 1.27, стена выложенная в 2 кирпича = 1.0, современна, высокая = 0.85);
  • q 3 - соотношение суммарной площади оконных проемов к площади пола (40% = 1.2, 30% = 1.1, 20% - 0.9, 10% = 0.8);
  • q 4 - уличная температура (берется минимальное значение: -35 о С = 1.5, -25 о С = 1.3, -20 о С = 1.1, -15 о С = 0.9, -10 о С = 0.7);
  • q 5 - число наружных стен в комнате (все четыре = 1.4, три = 1.3, угловая комната = 1.2, одна = 1.2);
  • q 6 - тип расчетного помещения над расчетной комнатой (холодное чердачное = 1.0, теплое чердачное = 0.9, жилое отапливаемое помещение = 0.8);
  • q 7 - высота потолков (4.5 м = 1.2, 4.0 м = 1.15, 3.5 м = 1.1, 3.0 м = 1.05, 2.5 м = 1.3).

По любому из описанных методов можно провести расчет тепловой нагрузки многоквартирного дома.

Примерный расчет

Условия таковы. Минимальная температура в холодное время года - -20 о С. Комната 25 кв. м с тройным стеклопакетом, двустворчатыми окнами, высотой потолков 3.0 м, стенами в два кирпича и неотапливаемым чердаком. Расчет будет следующий:

Q = 100 Вт/м 2 × 25 м 2 × 0,85 × 1 × 0,8(12%) × 1,1 × 1,2 × 1 × 1,05.

Результат, 2 356.20, делим на 150. В итоге получается, что в комнате с указанными параметрами нужно установить 16 секций.

Если необходим расчет в гигакалориях

В случае отсутствия счетчика тепловой энергии на открытом отопительном контуре расчет тепловой нагрузки на отопление здания рассчитывают по формуле Q = V * (Т 1 - Т 2) / 1000, где:

  • V - количество воды, потребляемой системой отопления, исчисляется тоннами или м 3 ,
  • Т 1 - число, показывающее температуру горячей воды, измеряется в о С и для вычислений берется температура, соответствующая определенному давлению в системе. Показатель этот имеет свое название - энтальпия. Если практическим путем снять температурные показатели нет возможности, прибегают к усредненному показателю. Он находится в пределах 60-65 о С.
  • Т 2 - температура холодной воды. Ее измерить в системе довольно трудно, поэтому разработаны постоянные показатели, зависящие от температурного режима на улице. К примеру, в одном из регионов, в холодное время года этот показатель принимается равным 5, летом - 15.
  • 1 000 - коэффициент для получения результата сразу в гигакалориях.

В случае закрытого контура тепловая нагрузка (гкал/час) рассчитывается иным образом:

Q от = α * q о * V * (t в - t н.р) * (1 + K н.р) * 0,000001, где


Расчет тепловой нагрузки получается несколько укрупненным, но именно эта формула дается в технической литературе.

Все чаще, чтобы повысить эффективность работы отопительной системы, прибегают к строения.

Работы эти проводят в темное время суток. Для более точного результата нужно соблюдать разницу температур между помещением и улицей: она должна быть не менее в 15 о. Лампы дневного освещения и лампы накаливания выключаются. Желательно убрать ковры и мебель по максимуму, они сбивают прибор, давая некоторую погрешность.

Обследование проводится медленно, данные регистрируются тщательно. Схема проста.

Первый этап работ проходит внутри помещения. Прибор двигают постепенно от дверей к окнам, уделяя особое внимание углам и прочим стыкам.

Второй этап - обследование тепловизором внешних стен строения. Все так же тщательно исследуются стыки, особенно соединение с кровлей.

Третий этап - обработка данных. Сначала это делает прибор, затем показания переносятся в компьютер, где соответствующие программы заканчивают обработку и выдают результат.

Если обследование проводила лицензированная организация, то она по итогу работ выдаст отчет с обязательными рекомендациями. Если работы велись лично, то полагаться нужно на свои знания и, возможно, помощь интернета.

Описание:

Количество тепловой энергии, потребляемой системами отопления, вентиляции и горячего водоснабжения здания, является необходимым показателем при определении тепловой эффективности зданий, проведении энергоаудита, деятельности энергосервисных организаций, сравнении фактического теплопотребления здания, измеренного теплосчетчиком, с требуемым исходя из фактических теплотехнических характеристик здания и степени автоматизации системы отопления и во многих других случаях. В этом номере редакция публикует пример расчета количества тепловой энергии на горячее водоснабжение жилого здания

Расчет количества тепловой энергии на горячее водоснабжение

Количество тепловой энергии, потребляемой системами отопления, вентиляции и горячего водоснабжения здания, является необходимым показателем при определении тепловой эффективности зданий, проведении энергоаудита, деятельности энергосервисных организаций, сравнении фактического теплопотребления здания, измеренного теплосчетчиком, с требуемым исходя из фактических теплотехнических характеристик здания и степени автоматизации системы отопления и во многих других случаях. В этом номере редакция публикует пример расчета количества тепловой энергии на горячее водоснабжение жилого здания*.

Исходные данные

Объект (здание):

  • количество этажей в здании – 16;
  • количество секций в здании – 4;
  • количество квартир в здании – 256.
Отопительный период:
  • продолжительность отопительного периода, z ht = 214 сут.;
  • средняя за период температура внутреннего воздуха в здании, t int = 20 °C;
  • cредняя за период температура наружного воздуха, t ht = – 3,1 °C;
  • расчетная температура наружного воздуха, t ext = – 28 °C;
  • средняя за период скорость ветра, v = 3,8 м/с.
Горячее водоснабжение:
  • тип системы горячего водоснабжения: с неизо-лированными стояками и с полотенцесушителями;
  • наличие сетей горячего водоснабжения: при наличии сетей горячего водоснабжения после ЦТП;
  • средний расход воды одним пользователем, g = 105 л/сут.;
  • количество дней отключения горячего водоснабжения, m = 21 сут.

Порядок расчета

1. Средний расчетный за сутки отопительного периода объем потребления горячей воды в жилом здании V hw определяют по формуле:

V hw = gm ч 10 –3 , (1)

Где g – средний за отопительный период расход воды одним пользователем (жителем), равный 105 л/сут. для жилых зданий с централизованным горячим водоснабжением и оборудованных устройствами стабилизации давления воды на минимальном уровне (регуляторы давления на вводе в здание, зонирование системы по высоте, установка квартирных регуляторов давления); для других потребителей – см. СНиП 2.04.01–85* «Внутренний водопровод и канализация зданий»;
m ч – число пользователей (жителей), чел.

V hw = 105 865 10 –3 = 91 м 3 /сут.

В случае проведения расчета для многоквартирного дома с учетом оснащенности квартир водосчетчиками из условия, что при квартирном учете происходит 40 %-е сокращение водопотребления, расчет потребления горячей воды будет производиться по формуле:

где K уч – количество квартир, оснащенных водосчетчиками;
K кв – количество квартир в заднии.

2. Среднечасовой за отопительный период расход тепловой энергии на горячее водоснабжение Qhw, кВт, определяют согласно СНиП 2.04.01–85*. Допускается определение среднечасового расхода Q hw по формуле:

(2)


где V hw – средний расчетный за сутки отопительного периода объем потребления горячей воды в жилом здании, м 3 /сут.; определяют по формуле (1);
t wc – температура холодной воды, °C, принимают t wc = 5 °C;
k hl – коэффициент, учитывающий потери теплоты трубопроводами систем горячего водоснабжения, принимают по табл. 1;
ρ w – плотность воды, кг/л, ρ w = 1 кг/л;
c w – удельная теплоемкость воды, Дж/ (кг °C); c w = 4,2 Дж/ (кг °C).

Получаем Q hw = 299 кВт.


3. Количество тепловой энергии, потребляемой системой горячего водоснабжения за год с учетом включения системы на ремонт Q y hw определяют по формуле:

(3)


где Q hw – определяют по формуле (2);
k hl , t wc – то же, что в формуле (2);
m – количество дней отключения горячего водоснабжения, сут.; в Московском регионе принимают m = 14 сут.;
z ht – продолжительность, сут., отопительного периода со средней суточной температурой наружного воздуха ниже 8 °C (по СНиП 23-01–99*), а для территорий с t ext = –30 °C и ниже – со средней суточной температурой наружного воздуха ниже 10 °C;
α – коэффициент, учитывающий снижение уровня водоразбора в жилых зданиях в летний период: α = 0,9 – для жилых зданий; α = 1 – для остальных зданий;
t wcs – температура холодной воды в летний период, °C, принимают равной 15 °C при водозаборе из открытых источников.
Получаем Q y hw = 2 275 058 кВт ч.