Удельная теплота плавления металлов таблица. Основные физические свойства железа

На данном уроке мы изучим понятие «удельная теплота плавления». Эта величина характеризует количество теплоты, которое необходимо сообщить 1 кг вещества при температуре плавления, чтобы оно из твердого состояния перешло в жидкое (или наоборот).

Мы изучим формулу для нахождения количества теплоты, которое необходимо для плавления (или выделяется при кристаллизации) вещества.

Тема: Агрегатные состояния вещества

Урок: Удельная теплота плавления

Данный урок посвящён основной характеристике плавления (кристаллизации) вещества - удельной теплоте плавления.

На прошлом уроке мы затрагивали вопрос: как изменяется внутренняя энергия тела при плавлении?

Мы выяснили, что при подведении теплоты внутренняя энергия тела возрастает. Вместе с тем, мы знаем, что внутренняя энергия тела может характеризоваться таким понятием, как температура. Как нам уже известно, при плавлении температура не меняется. Поэтому может возникнуть подозрение, что мы имеем дело с парадоксом: внутренняя энергия увеличивается, а температура не меняется.

Объяснение этого факта довольно простое: вся энергия тратится на разрушение кристаллической решётки. Аналогично и в обратном процессе: при кристаллизации молекулы вещества объединяются в единую систему, при этом избыток энергии отдаётся и поглощается внешней средой.

В результате различных экспериментов удалось установить, что для одного и того же вещества требуется различное количество теплоты, чтобы перевести его из твёрдого состояния в жидкое.

Тогда было решено сравнить эти количества теплоты при одинаковой массе вещества. Это привело к появлению такой характеристики, как удельная теплота плавления.

Определение

Удельная теплота плавления - количество теплоты, которое необходимо сообщить 1 кг вещества, нагретому до температуры плавления, чтобы перевести его из твёрдого состояния в жидкое.

Такая же величина выделяется и при кристаллизации 1 кг вещества.

Обозначается удельная теплота плавления (греческая буква, читается как «лямбда» или «ламбда»).

Единицы измерения: . В данном случае в размерности отсутствует температура, так как при плавлении (кристаллизации) температура не меняется.

Для вычисления количества теплоты, необходимого для плавления вещества, используется формула:

Количество теплоты (Дж);

Удельная теплота плавления (, которая ищется по таблице;

Масса вещества.

Когда тело кристаллизуется, пишется со знаком «-», так как тепло выделяется.

В качестве примера можно привести удельную теплоту плавления льда:

. Или удельную теплоту плавления железа:

.

То, что удельная теплота плавления льда получилась больше удельной теплоты плавления железа, не должно удивлять. Количество теплоты, которое необходимо тому или иному веществу для плавления, зависит от характеристик вещества, в частности, от энергии связей между частицами данного вещества.

На этом уроке мы рассмотрели понятие удельной теплоты плавления.

На следующем уроке мы научимся решать задачи на нагревание и плавление кристаллических тел.

Список литературы

  1. Генденштейн Л. Э, Кайдалов А. Б., Кожевников В. Б. Физика 8 / Под ред. Орлова В. А., Ройзена И. И. - М.: Мнемозина.
  2. Перышкин А. В. Физика 8. - М.: Дрофа, 2010.
  3. Фадеева А. А., Засов А. В., Киселев Д. Ф. Физика 8. - М.: Просвещение.
  1. Физика, механика и т. п. ().
  2. Классная физика ().
  3. Интернет-портал Kaf-fiz-1586.narod.ru ().

Домашнее задание

Мы видели, что сосуд со льдом и водой, внесенный в теплую комнату, не нагревается до тех пор, пока весь лед не растает. При этом из льда при получается вода при той же температуре. В это время к смеси лед - вода притекает теплота и, следовательно, внутренняя энергия этой смеси увеличивается. Отсюда мы должны сделать вывод, что внутренняя энергия воды при больше, чем внутренняя энергия льда при той же температуре. Так как кинетическая энергия молекул, воды и льда при одна и та же, то приращение внутренней энергии при плавлении является приращением потенциальной энергии молекул.

Опыт обнаруживает, что сказанное справедливо для всех кристаллов. При плавлении кристалла необходимо непрерывно увеличивать внутреннюю энергию системы, причем температура кристалла и расплава остается неизменной. Обычно увеличение внутренней энергии происходит при передаче кристаллу некоторого количества теплоты. Той же цели можно достигнуть и путем совершения работы, например трением. Итак, внутренняя энергия расплава всегда больше, чем внутренняя энергия такой же массы кристаллов при той же температуре. Это означает, что упорядоченное расположение частиц (в кристаллическом состоянии) соответствует меньшей энергии, чем неупорядоченное (в расплаве).

Количество теплоты, необходимое для перехода единицы массы кристалла в расплав той же температуры, называют удельной теплотой плавления кристалла. Она выражается в джоулях на килограмм .

При затвердевании вещества теплота плавления выделяется и передается окружающим телам.

Определение удельной теплоты плавления тугоплавких тел (тел с высокой температурой плавления) представляет нелегкую задачу. Удельная теплота плавления такого легкоплавкого кристалла, как лед, может быть определена при помощи калориметра. Налив в калориметр, некоторое количество воды определенной температуры и бросив в нее известную массу льда, уже начавшего таять, т. е. имеющего температуру , выждем, пока весь лед не растает и температура воды в калориметре примет неизменяющееся значение. Пользуясь законом сохранения энергии, составим уравнение теплового баланса (§ 209), позволяющее определить удельную теплоту плавления льда.

Пусть масса воды (включая водяной эквивалент калориметра) равна масса льда - , удельная теплоемкость воды - , начальная температура воды - , конечная - , удельная теплота плавления льда - . Уравнение теплового баланса имеет вид

.

В табл. 16 приведены значения удельной теплоты плавления некоторых веществ. Обращает на себя внимание большая теплота плавления льда. Это обстоятельство очень важно, так как оно замедляет таяние льда в природе. Будь удельная теплота плавления значительно меньше, весенние паводки были бы во много раз сильнее. Зная удельную теплоту плавления, мы можем рассчитать, какое количество теплоты необходимо для расплавления какого-либо тела. Если тело уже нагрето до точки плавления, то надо затратить теплоту только на плавление его. Если же оно имеет температуру ниже точки плавления, то надо еще потратить теплоту на нагревание.

Таблица 16.

Вещество

Вещество

Удельной теплотой плавления называют количество теплоты, которое требуется для расплавления одного грамма вещества. Удельная теплота плавления измеряется в джоулях на килограмм и рассчитывается, как частное от деления количества теплоты на массу плавящегося вещества.

Удельная теплота плавления для разных веществ

Различные вещества имеют разную удельную теплоту плавления.

Алюминий - металл серебристого цвета. Он легко поддается обработке и широко используется в технике. Его удельная теплота плавления составляет 290 кДж/кг.

Железо - тоже металл, один из самых распространенных на Земле. Железо находит широкое применение в промышленности. Его удельная теплота плавления равняется 277 кДж/кг.

Золото - благородный металл. Оно используется в ювелирном деле, в стоматологии и фармакологии. Удельная теплота плавления золота составляет 66.2 кДж/кг.

Серебро и платина - также благородные металлы. Их используют в изготовлении ювелирных украшений, в технике и медицине. Удельная теплота составляет 101 кДж/кг, а серебра - 105 кДж/кг.

Олово представляет собой легкоплавкий металл серого цвета. Оно широко применяется в составе припоев, для изготовления белой жести и в производстве бронзы. Удельная теплота составляет 60.7 кДж/кг.

Ртуть представляет собой подвижный металл, замерзающий при температуре -39 градусов. Это - единственный из металлов, который в нормальных условиях существует в жидком состоянии. Ртуть применяется в металлургии, медицине, технике, химической промышленности. Ее удельная теплота плавления составляет 12 кДж/кг.

Лёд представляет собой твердую фазу воды. Его удельная теплота плавления равняется 335 кДж/кг.

Нафталин - органическое вещество, сходное по химическим свойствам с . Он плавится при 80 градусах и самовоспламеняется при 525 градусах. Нафталин широко используется в химической промышленности, фармацевтике, производстве взрывчатых веществ и красителей. Удельная теплота плавления нафталина составляет 151 кДж/кг.

Газы метан и пропан используются в качестве энергоносителей и служат сырьем в химической промышленности. Удельная теплота плавления метана составляет 59 кДж/кг, а - 79.9 кДж/кг.

При плавлении происходит разрушение пространственной решетки кристаллического тела. На этот процесс расходуется определенное количество энергии от какого-нибудь внешнего источника. В результате внутренняя энергия тела в процессе плавления увеличивается.

Количество теплоты, необходимое для перехода тела из твердого состояния в жидкое при температуре плавления, называется теплотой плавления.

В процессе отвердевания тела, наоборот, внутренняя энергия тела уменьшается. Тело отдает теплоту окружающим телам. Согласно закону сохранения энергии количество теплоты, поглощенное телом при плавлении (при температуре плавления), равно количеству теплоты, отданному этим телом при отвердевании (при температуре отвердевания).

Удельная теплота плавления

Теплота плавления зависит от массы плавящегося вещества и его свойств. Зависимость теплоты плавления от рода вещества характеризуют удельной теплотой плавления этого вещества.

Удельной теплотой плавления вещества называется отношение теплоты плавления тела из этого вещества к массе тела.

Обозначим теплоту плавления через Q пл , массу тела буквой т и удельную теплоту плавления буквой λ. Тогда

Таким образом, чтобы расплавить кристаллическое тело массой m , взятое при температуре плавления, необходимо количество теплоты, равное

(8.8.2)

Теплота кристаллизации

Согласно закону сохранения энергии количество теплоты, выделяемое при кристаллизации тела (при температуре кристаллизации), равно

(8.8.3)

Из формулы (8.8.1) следует, что удельная теплота плавления в СИ выражается в джоулях на килограмм.

Довольно велика удельная теплота плавления льда 333,7 кДж/кг. Удельная теплота плавления свинца всего лишь 23 кДж/кг, а золота - 65,7 кДж/кг.

Формулы (8.8.2) и (8.8.3) используются при решении задач на составление уравнений теплового баланса в тех случаях, когда мы имеем дело с плавлением и отвердеванием кристаллических тел.

Роль теплоты плавления льда и кристаллизации воды в природе

Поглощение теплоты при таянии льда и выделение ее при замерзании воды оказывают значительное влияние на изменение температуры воздуха, особенно вблизи водоемов. Все вы, вероятно, замечали, что во время обильных снегопадов обычно наступает потепление.

Очень важно большое значение удельной теплоты плавления льда. Еще в конце XVIII в. шотландский ученый Д. Блэк (1728-1799), открывший существование теплоты плавления и кристаллизации, писал: «Если бы лед не обладал значительной теплотой плавления, то тогда весной вся масса льда должна была бы растаять в несколько минут или секунд, так как теплота из воздуха непрерывно передается льду. Но тогда последствия этого были бы ужасны: ведь и при существующем положении возникают большие наводнения и сильные потоки воды при таянии больших масс льда и снега».

Сопло космической ракеты

Приведем интересный технический пример практического использования теплоты плавления и парообразования. При изготовлении сопла для космической ракеты следует учитывать, что струя газов, выходящая из сопла ракеты, имеет температуру около 4000 °С. В природе практически отсутствуют материалы, которые в чистом виде могли бы выдержать такую температуру. Поэтому приходится прибегать ко всякого рода ухищрениям, чтобы охладить материал сопла во время горения топлива.

Сопло изготавливают методом порошковой металлургии. В полость формы закладывается порошок тугоплавкого металла (вольфрам). Затем его подвергают сдавливанию. Порошок спекается, получается пористая структура типа пемзы. Затем эта «пемза» пропитывается медью (ее температура плавления всего 1083 °С).

Полученный материал называется псевдосплавом. На рисунке 8.31 показана фотография микроструктуры псевдосплава. На белом фоне вольфрамового каркаса видны медные включения неправильной формы. Этот сплав может, как это ни невероятно, кратковременно работать даже при температуре газов, образующихся при сгорании топлива, т. е. выше 4000°С.

Происходит это следующим образом. Вначале температура сплава растет, пока не достигнет температуры плавления меди t 1 (рис. 8.32). После этого температура сопла не будет меняться, пока вся медь не расплавится (промежуток времени от τ 1 до τ 2 ). В дальнейшем температура опять возрастает до тех пор, пока медь не закипит. Это происходит при температуре t 2 = 2595 °С, меньшей температуры плавления вольфрама (3380 °С). Пока вся медь не выкипит, температура сопла опять меняться не будет, так как испаряющаяся медь забирает теплоту от вольфрама (промежуток времени от τ 3 до τ 4 ). Конечно, сколько угодно долго сопло работать не будет. После испарения меди вольфрам опять начнет нагреваться. Однако двигатель ракеты работает всего лишь несколько минут, а за это время сопло не успеет перегреться и расплавиться.

В предыдущем параграфе мы рассматривали график плавления и отвердевания льда. Из графика видно, что, пока лёд плавится, температура его не меняется (см. рис. 18). И лишь после того, как весь лёд расплавится, температура образовавшейся жидкости начинает повышаться. Но ведь и во время процесса плавления лёд получает энергию от сгорающего в нагревателе топлива. А из закона сохранения энергии следует, что она не может исчезнуть. На что же расходуется энергия топлива во время плавления?

Мы знаем, что в кристаллах молекулы (или атомы) расположены в строгом порядке. Однако и в кристаллах они находятся в тепловом движении (колеблются). При нагревании тела средняя скорость движения молекул возрастает. Следовательно, возрастает и их средняя кинетическая энергия и температура. На графике это участок АВ (см. рис. 18). Вследствие этого размах колебаний молекул (или атомов) увеличивается. Когда тело нагреется до температуры плавления, то нарушится порядок в расположении частиц в кристаллах. Кристаллы теряют свою форму. Вещество плавится, переходя из твёрдого состояния в жидкое.

Следовательно, вся энергия, которую получает кристаллическое тело после того, как оно уже нагрето до температуры плавления, расходуется на разрушение кристалла. В связи с этим температура тела перестаёт повышаться. На графике (см. рис. 18) это участок ВС.

Опыты показывают, что для превращения различных кристаллических веществ одной и той же массы в жидкость при температуре плавления требуется разное количество теплоты.

Физическая величина, показывающая, какое количество теплоты необходимо сообщить кристаллическому телу массой 1 кг, чтобы при температуре плавления полностью перевести его в жидкое состояние, называется удельной теплотой плавления.

Удельную теплоту плавления обозначают λ (греч. буква «лямбда»). Её единица - 1 Дж / кг.

Определяют удельную теплоту плавления на опыте. Так, было установлено, что удельная теплота плавления льда равна 3,4 10 5 - . Это означает, что для превращения куска льда массой 1 кг, взятого при 0 °С, в воду такой же температуры требуется затратить 3,4 10 5 Дж энергии. А чтобы расплавить брусок из свинца массой 1 кг, взятого при его температуре плавления, потребуется затратить 2,5 10 4 Дж энергии.

Следовательно, при температуре плавления внутренняя энергия вещества в жидком состоянии больше внутренней энергии такой же массы вещества в твёрдом состоянии.

Чтобы вычислить количество теплоты Q, необходимое для плавления кристаллического тела массой т, взятого при его температуре плавления и нормальном атмосферном давлении, нужно удельную теплоту плавления λ умножить на массу тела m:

Из этой формулы можно определить, что

λ = Q / m, m = Q / λ

Опыты показывают, что при отвердевании кристаллического вещества выделяется точно такое же количество теплоты, которое поглощается при его плавлении. Так, при отвердевании воды массой 1 кг при температуре 0 °С выделяется количество теплоты, равное 3,4 10 5 Дж. Точно такое же количество теплоты требуется и для плавления льда массой 1 кг при температуре 0 °С.

При отвердевании вещества всё происходит в обратном порядке. Скорость, а значит, и средняя кинетическая энергия молекул в охлаждённом расплавленном веществе уменьшаются. Силы притяжения теперь могут удерживать медленно движущиеся молекулы друг около друга. Вследствие этого расположение частиц становится упорядоченным - образуется кристалл. Выделяющаяся при кристаллизации энергия расходуется на поддержание постоянной температуры. На графике это участок EF (см. рис. 18).

Кристаллизация облегчается, если в жидкости с самого начала присутствуют какие-либо посторонние частицы, например пылинки. Они становятся центрами кристаллизации. В обычных условиях в жидкости имеется множество центров кристаллизации, около которых и происходит образование кристалликов.

Таблица 4.
Удельная теплота плавления некоторых веществ (при нормальном атмосферном давлении)

При кристаллизации происходит выделение энергии и передача её окружающим телам.

Количество теплоты, выделяющееся при кристаллизации тела массой т, определяется также по формуле

Внутренняя энергия тела при этом уменьшается.

Пример . Для приготовления чая турист положил в котелок лёд массой 2 кг, имеющий температуру 0 °С. Какое количество теплоты необходимо для превращения этого льда в кипяток при температуре 100 °С? Энергию, израсходованную на нагревание котелка, не учитывать.

Какое количество теплоты понадобилось бы, если вместо льда турист взял из проруби воду той же массы при той же температуре?

Запишем условие задачи и решим её.

Вопросы

  1. Как объяснить процесс плавления тела на основе учения о строении вещества?
  2. На что расходуется энергия топлива при плавлении кристаллического тела, нагретого до температуры плавления?
  3. Что называется удельной теплотой плавления?
  4. Как объяснить процесс отвердевания на основе учения о строении вещества?
  5. Как вычисляют количество теплоты, необходимое для плавления кристаллического тела, взятого при температуре плавления?
  6. Как вычислить количество теплоты, выделяющееся при кристаллизации тела, имеющего температуру плавления?

Упражнение 12

Задание

  1. Поставьте на плиту две одинаковые жестяные банки. В одну налейте воду массой 0,5 кг, в другую положите несколько кубиков льда той же массы. Заметьте, сколько времени потребуется, чтобы вода в обеих банках закипела. Напишите краткий отчёт о вашем опыте и объясните его результаты.
  2. Прочитайте параграф «Аморфные тела. Плавление аморфных тел». Подготовьте по нему доклад.