Физические методы анализа в аналитической химии. Классификация методов аналитической химии

Аналитическая химия - это раздел, который позволяет осуществлять контроль производства и качества продуктов в различных отраслях хозяйства. На результатах этих исследований основывается разведка природных ископаемых. Методы аналитической химии применяют для контроля степени загрязненности окружающей среды.

Практическая значимость

Анализ является основным вариантом выяснения химического состава кормов, удобрений, почв, сельскохозяйственных продуктов, что важно для нормального функционирования агропромышленной отрасли.

Качественные и количественные химии незаменимы в биотехнологии, медицинской диагностике. От степени оснащения исследовательских лабораторий зависит эффективность и результативность многих научных областей.

Теоретические основы

Аналитическая химия — это наука, позволяющая определять состав и химическое строение вещества. Ее методы помогают отвечать на вопросы, связанные не только с составными частями вещества, но и их количественным соотношением. С их помощью можно понять, в какой форме конкретный компонент находится в исследуемом веществе. В некоторых случаях с их помощью можно определять пространственное расположение составных компонентов.

При продумывании методов часто заимствуется информация из смежных областей наук, она адаптируется под конкретную сферу исследования. Какие вопросы решает аналитическая химия? Методы анализа позволяют разрабатывать теоретические основы, устанавливать границы их использования, оценивать метрологические и иные характеристики, создавать методики анализа разнообразных объектов. Они постоянно обновляются, модернизируются, становятся все более универсальными и эффективными.

Когда ведут речь о методе анализа, предполагают принцип, который положен в выражение количественной связи между определяемым свойством и составом. Отобранные приемы проведения, в том числе выявление и устранение помех, устройства для практической деятельности и варианты обработки проведенных измерений.

Функции аналитической химии

Выделяют три основные области знания:

Современная аналитическая химия — это совокупность качественного и количественного анализа. Первый раздел решает вопрос о компонентах, включенных в анализируемый объект. Второй дает информацию о количественном содержании одного либо нескольких частей вещества.

Классификация методов

Их делят на следующие группы: отбора проб, разложения проб, разделения компонентов, идентификации и определения их. Есть и гибридные методы, в которых сочетается разделение и определение.

Максимальное значение имеют методы определения. Их делят по характеру анализируемого свойства и варианту регистрации определенного сигнала. В задачи по аналитической химии часто входит расчет определенных компонентов на основе химических реакций. Для проведения таких расчетов необходима прочная математическая база.

Среди основных требований, которые предъявляются к методам аналитической химии, выделим:

  • правильность и отличную воспроизводимость получаемых результатов;
  • низкий предел определения конкретных компонентов;
  • экспрессность;
  • избирательность;
  • простота;
  • автоматизация эксперимента.

При выборе метода анализа важно четко знать цель и задачи исследования, оценить основные преимущества и недостатки доступных методик.

Химический метод аналитической химии основывается на качественных реакциях, характерных для определенных соединений.

Аналитический сигнал

После того, как будут завершены отбор и подготовка пробы, осуществляется стадия химического анализа. Она связана с обнаружением компонентов в смеси, определением его количественного содержания.

Аналитическая химия — это наука, в которой есть множество методов, одним из них является сигнал. Аналитическим сигналом считают среднее из нескольких измерений физической величины на последней стадии анализа, которая функционально связана с содержанием искомого компонента. Если необходимо обнаружить определенный элемент, пользуются аналитическим сигналом: осадком, окраской, линией в спектре. Определение количества компонента связано с массой осадка, интенсивностью спектральных линий, величиной силы тока.

Методы маскирования, концентрирования, разделения

Маскированием является торможение либо полное подавление химической реакции в присутствии тех веществ, которые могут менять ее скорость либо направление. Выделяют два варианта маскирования: равновесное (термодинамическое) и неравновесное (кинетическое). Для первого случая создают условия, при которых настолько понижается константа реакции, что процесс идет незначительно. Концентрация маскируемого компонента будет недостаточна для надежной фиксации аналитического сигнала. Кинетическое маскирование базируется на росте разницы между скоростями определяемого и маскируемого вещества с постоянным реагентом.

Проведение концентрирования и разделения обусловлено определенными факторами:

  • в пробе есть компоненты, которые мешают определению;
  • концентрация определяемого вещества не превышает нижний предел обнаружения;
  • выявляемые компоненты неравномерно распределяются в пробе;
  • проба радиоактивна либо токсична.

Разделение является процессом, благодаря которому компоненты, имеющиеся в исходной смеси, можно отделить друг от друга.

Концентрирование - операция, благодаря которой увеличивается отношение количества небольших элементов к числу макрокомпонента.

Осаждение подходит для разделения нескольких Используют его в комбинации с методами определения, рассчитанными на получение аналитического сигнала от твердых образцов. Основывается разделение на разной растворимости веществ, используемых в водных растворах.

Экстракция

Кафедра аналитической химии предполагает проведение лабораторных исследований, связанных с экстракцией. Под ним подразумевают физико-химический процесс распределения вещества между несмешивающимися жидкостями. Экстракцией называют и процесс переноса массы в ходе химических реакций. Такие методы исследования подходят для извлечения, концентрирования макро- и микрокомпонентов, а также для группового и индивидуального выделения при анализе разных природных и промышленных объектов. Подобные методики просты и быстры в исполнении, гарантируют отличную эффективность концентрирования и разделения, они полностью совместимы с разнообразными методами определения. Благодаря экстракции можно рассматривать состояние компонента в растворе при разных условиях, а также выявлять его физико-химические характеристики.

Сорбция

Ее используют для концентрирования и разделения веществ. Сорбционные технологии дают неплохую селективность разделения смеси. Это процесс поглощения паров, жидкостей, газов сорбентами (поглотителями на твердой основе).

Цементация и электролитическое выделение

Чем еще занимается аналитическая химия? Учебник содержит информацию о методике электровыведения, при которой концентрированное либо отделяемое вещество осаждают на твердых электродах в виде простого вещества либо в составе соединения.

Электролиз основывается на осаждении конкретного вещества с помощью электрического тока. Самым распространенным вариантом является катодное осаждение малоактивных металлов. Материалом для электрода может служить платина, углерод, медь, серебро, вольфрам.

Электрофорез

Он базируется на отличиях в скоростях движения частиц разного заряда в электрическом поле при изменении напряженности, размера частиц. В настоящее время в аналитической химии выделяют две формы электрофореза: простой (фронтальный) и на носителе (зонный). Первый вариант подходит для небольшого объема раствора, в котором содержатся разделяемые компоненты. Его помещают в трубку, где есть растворы. Аналитическая химия объясняет все процессы, происходящие на катоде и аноде. При зонном электрофорезе передвижение частиц осуществляется в стабилизирующей среде, удерживающей их на местах после отключения тока.

Метод цементации состоит в восстановлении составных частей на металлах, имеющих существенный отрицательный потенциал. В подобном случае происходит сразу два процесса: катодный (с выделением компонента) и анодный (цементирующий металл растворяется).

Испарение

Дистилляция основывается на различной летучести химических веществ. Происходит переход из жидкой формы в газообразное состояние, потом конденсируется, опять переходя в жидкую фазу.

При простой отгонке протекает одноступенчатый процесс разделения, затем концентрирования вещества. В случае выпаривания удаляют те вещества, которые присутствуют в летучей форме. Например, среди них могут быть макро- и микрокомпоненты. Сублимация (возгонка) предполагает перевод вещества из твердой фазы в газ, минуя жидкую форму. Подобную методику применяют в тех случаях, когда разделяемые вещества мало растворимы в воде либо плохо плавятся.

Заключение

В аналитической химии существует множество способов выделения одного вещества из смеси, выявления его наличия в исследуемом образце. Среди самых применяемых аналитических методов можно отметить хроматографию. Она позволяет выявлять жидкие, газообразные, твердые вещества, имеющие молекулярную массу от 1 до 106 а. е. м. Благодаря хроматографии можно получать полноценную информацию о свойствах и строении органических веществ различных классов. Основывается метод на распределении компонентов между подвижной и неподвижной фазой. Стационарной является твердое вещество (сорбент) либо пленка жидкости, которая нанесена на твердое вещество.

Подвижной фазой выступает газ либо жидкость, которые протекают сквозь неподвижную часть. Благодаря такой технологии можно идентифицировать отдельные компоненты, проводить количественный состав смеси, разделять ее на компоненты.

Помимо хроматографии, в качественном и количественном анализе используют гравиметрические, титриметрические, кинетические методы. Все они основываются на физических и химических свойствах веществ, позволяют исследователю обнаруживать в пробе определенные соединения, проводить расчеты их количественного содержания. Аналитическую химию по праву можно считать одним из важнейших разделов науки.

Инженеры-экологи должны знать химический состав сырья, продуктов и отходов производства и окружающей среды - воздуха, воды и почвы; важно выявить вредные вещества и определить их концентрацию. Эту задачу решает аналитическая химия - наука об определении химического состава веществ.

Задачи аналитической химии решаются главным образом физико-химическими методами анализа, которые, называют также инструментальными. Они используют измерение какого-либо физического или физико-химического свойства вещества для определения его состава. Он включает также разделы, посвящённые методам разделения и очистки веществ.

Цель данного курса лекций - ознакомление с принципами инструментальных методов анализа, чтобы ориентироваться в их возможностях и на этой основе ставить конкретные задачи специалистам - химикам и понимать смысл полученных результатов анализа.

Литература

    Алесковский В.Б. и др. Физико-химические методы анализа. Л-д, "Химия", 1988 г.

    Ю.С.Ляликов. Физико-химические методы анализа. М.,изд-во "Химия", 1974 г.

    Васильев В.П. Теоретические основы физико-химических методов анализа.М., Высшая школа, 1979 г.

    А.Д.Зимон, Н.Ф.Лещенко. Коллоидная химия. М., "Агар", 2001 г.

    А.И.Мишустин, К.Ф.Белоусова. Коллоидная химия (Методическое пособие). Изд-во МИХМ, 1990 г.

Первые две книги являются учебниками для студентов-химиков и поэтому достаточно сложные для вас. Это делает данные лекции весьма полезными. Однако можно читать отдельные главы.

К сожалению, для данного курса администрация пока не выделила отдельного зачёта, поэтому материал входит в общий экзамен, вместе с курсом физической химии.

2. Классификация методов анализа

Различают качественный и количественный анализ. Первый определяет наличие тех или иных компонентов, второй - их количественное содержание. Методы анализа подразделяются на химические и физико-химические. В данной лекции рассмотрим только химические методы, которые основаны на превращении анализируемого вещества в соединения, обладающие определенными свойствами.

При качественном анализе неорганических соединений исследуемый образец переводят в жидкое состояние растворением в воде или растворе кислоты или щёлочи, что позволяет обнаруживать элементы в форме катионов и анионов. Например, ионы Cu 2+ можно определить по образованию комплексного иона 2+ ярко-синего цвета.

Качественный анализ подразделяют на дробный и систематический. Дробный анализ- обнаружение нескольких ионов в смеси с приблизительно известным составом.

Систематический анализ - это полный анализ по определенной методике последовательного обнаружения индивидуальных ионов. Выделяют отдельные группы ионов со сходными свойствами посредством групповых реагентов, затем группы ионов подразделяют на подгруппы, а те, в свою очередь, - на отдельные ионы, которые и обнаруживают при помощи т.н. аналитических реакций. Это реакции с внешним эффектом - выпадением осадка, выделением газа, изменением цвета раствора.

Свойства аналитических реакций - специфичность, избирательность и чувствительность .

Специфичность позволяет обнаружить данный ион в присутствии других ионов по характерному признаку (цвет, запах и т.п.). Таких реакций сравнительно немного (например, реакция обнаружения иона NH 4 + действием на вещество щелочи при нагревании). Количественно специфичность реакции оценивается величиной предельного отношения, равного отношению концентраций определяемого иона и мешающих ионов. Например, капельная реакция на ион Ni 2+ действием диметилглиоксима в присутствии ионов Co 2+ удается при предельном отношении Ni 2+ к Co 2+ , равном 1:5000.

Избирательность (или селективность) реакции определяется тем, что сходный внешний эффект дают лишь несколько ионов. Bзбирательность тем больше, чем меньше число ионов, дающих сходный эффект.

Чувствительность реакции характеризуется пределом обнаружения или пределом разбавления. Например, предел обнаружения в микрокристаллоскопической реакции на ион Ca 2+ действием серной кислоты равен 0,04 мкг Ca 2+ в капле раствора.

Более сложная задача - анализ органических соединений. Углерод и водород определяют после сжигания пробы, регистрируя выделившийся углекислый газ и воду. Существуют ряд приемов для обнаружения других элементов.

Классификация методов анализа по количеству.

Компоненты подразделяют на основные (1 - 100% по массе), неосновные (0,01 - 1% по массе) и примесные или следовые (менее 0,01% по массе).

    В зависимости от массы и объема анализируемого образца различают макроанализ (0,5 - 1 г или 20 - 50 мл),

    полумикроанализ (0,1 - 0,01 г или 1,0 - 0,1 мл),

    микроанализ (10 -3 - 10 -6 г или 10 -1 - 10 -4 мл),

    ультрамикроанализ (10 -6 - 10 -9 г, или 10 -4 - 10 -6 мл),

    субмикроанализ (10 -9 - 10 -12 г или 10 -7 - 10 -10 мл).

Классификация по природе определяемых частиц:

1.изотопный (физический) - определяются изотопы

2. элементный или атомный - определяется набор химических элементов

3. молекулярный - определяется набор молекул, из которых состоит образец

4. структурно-групповой (промежуточный между атомным и молекулярным) - определяются функциональных группы в молекулах органических соединений.

5. фазовый - анализируются компоненты неоднородных объектов (например минералов).

Другие виды классификации анализа:

Валовой и локальный.

Деструктивный и не деструктивный.

Контактный и дистанционный.

Дискретный и непрерывный.

Важные характеристики аналитической процедуры - экспрессность метода (быстрота проведения анализа), стоимость анализа, возможность его автоматизации.

В теоретич. основах аналитической существенное место занимает , в т. ч. статистич. обработка результатов. Теория аналитической включает также учение об отборе и подготовке , о составлении схемы анализа и выборе методов, принципах и путях автоматизации анализа, применения ЭВМ, а также основы народнохозяйств. использования результатов хим. анализа. Особенность аналитической - изучение не общих, а индивидуальных, специфич. св-в и характеристик объектов, что обеспечивает избирательность мн. аналит. методов. Благодаря тесным связям с достижениями физики, математики, биологии и разл. областей техники (это особенно касается методов анализа) аналитическая превращ. в дисциплину на стыке наук.

Практически все методы определения основаны на зависимости к.-л. доступных измерению свойств в-в от их состава. Поэтому важное направление аналитической - отыскание и изучение таких зависимостей с целью использования их для решения аналит. задач. При этом почти всегда необходимо найти ур-ние связи между св-вом и составом, разработать способы регистрации св-ва (аналит. сигнала), устранить помехи со стороны др. компонентов, исключить мешающее влияние разл. факторов (напр., флуктуации т-ры). Величину аналит. сигнала переводят в единицы, характеризующие кол-во или компонентов. Измеряемыми быть, например, масса, объем, светопоглощение.

Большое внимание уделяется теории методов анализа. Теория хим. и частично физ.-хим. методов базируется на представлениях о нескольких осн. типах хим. р-ций, широко используемых в анализе (кислотно-основных, окислит.-восстановит., ), и нескольких важных процессах ( - , ). Внимание к этим вопросам обусловлено историей развития аналитической и практич. значимостью соответствующих методов. Поскольку, однако, доля хим. методов уменьшается, а доля физ.-хим. и физ. методов растет, большое значение приобретает совершенствование теории методов двух последних групп и интегрирование теоретич. аспектов отдельных методов в общей теории аналитической .

История развития. Испытания материалов проводились еще в глубокой древности, напр. исследовали с целью установления их пригодности для плавки, разл. изделия -для определения содержания в них Аи и Ag. Алхимики 14-16 вв. впервые применили и выполнили огромный объем эксперим. работ по изучению св-в в-в, положив начало хим. методам анализа. В 16-17 вв. (период ) появились новые хим. способы обнаружения в-в, основанные на р-циях в р-ре (напр., открытие Ag + по образованию осадка с Cl -). Родоначальником научной аналитической считают Р. Бойля, к-рый ввел понятие "хим. анализ".

До 1-й пол. 19 в. аналитическая была осн. разделом . В этот период были открыты мн. хим. элементы, выделены составные части нек-рых прир. в-в, установлены и кратных отношений, . Т. Бергман разработал схему систематич. анализа, ввел H 2 S как аналит. , предложил методы анализа в пламени с получением перлов и т.д. В 19 в. систематич. качеств. анализ усовершенствовали Г. Розе и К. Фрезениус. Этот же век ознаменовался огромными успехами в развитии количеств. анализа. Был создан титриметрич. метод (Ф. Декруазиль, Ж. Гей-Люссак), значительно усовершенствован гравиметрич. анализ, разработаны методы . Большое значение имело развитие методов орг. соединений (Ю. Либих). В кон. 19 в. сложилась теория аналитической , в основу к-рой было положено учение о хим. в р-рах с участием (гл. обр. В. Оствальд). К этому времени преобладающее место в аналитической заняли методы анализа в водных р-рах.

В 20 в. разработаны методы микроанализа орг. соединений (Ф. Прегль). Был предложен полярографич. метод (Я. Гейровский, 1922). Пoявилocь много физ.-хим. и физ. методов, напр. масс-спектрометрический, рентгеновский, ядерно-физические. Большое значение имело открытие (М.С. Цвет, 1903) и создание затем разных его вариантов, в частности распределит. (А. Мартин иР. Синт, 1941).

В России и в СССР большое значение для развития аналитической имели работы Н.А. Меншуткина (его учебник по аналитической выдержал 16 изданий). М.А. Ильинский, и особенно Л.А. Чугаев ввели в практику орг. аналит. (кон. 19-нач. 20 вв.), Н.А. Тананаев разработал капельный метод качеств. анализа (одновременно с Ф. Файглем, 20-е гг. 20 в.). В 1938 Н. А. Измайлов и М.С Шрайбер впервые описали . В 1940-е гг. были предложены плазменные источники для атомно-эмиссионного анализа. Большой вклад советские ученые внесли в изучение и его аналит. использования (И.П. Алимарин, А.К. БабкоХ в теорию действия орг. аналит. , в развитие методов фотометрич. анализа, атомно-абсорбц. , в аналитической отдельных элементов, особенно редких и платиновых, и ряда объектов - в-в высокой чистоты, минер. сырья, и .

Требования практики всегда стимулировали развитие аналитической . Так, в 40-70-х гг. 20 в. в связи с необходимостью анализа ядерных, полупроводниковых и др. материалов высокой чистоты были созданы такие чувствительные методы, как , искровая масс-спектроме-трия, химико-спектральный анализ, _вольтамперометрия, обеспечивающие определение до 10 -7 - 10 -8 % примесей в чистых в-вах, т.е. 1 часть примеси на 10-1000 млрд. частей осн. в-ва. Для развития черной , особенно в связи с переходом к скоростному конвертерному произ-ву стали, решающее значение приобрела экспрессность анализа. Использование т. наз. квантометров-фотоэлектрич. приборов для многоэлементного оптич. спектрального или рентгеновского анализа позволяет проводить анализ в ходе плавки за неск. минут.

Необходимость анализа сложных смесей орг. соединений обусловила интенсивное развитие , к-рая позволяет анализировать сложнейшие смеси, содержащие неск. десятков и даже сотен . Аналитическая в значит. мере способствовала овладению энергией , изучению космоса и океана, развитию электроники, прогрессу . наук.

Предмет исследования. Важную роль играет развитие теории отбора анализируемых материалов; обычно вопросы пробоотбора решаются совместно со специалистами по изучаемым в-вам (напр., с геологами, металловедами). Аналитическая разрабатывает способы разложения - , сплавление, и т.д., к-рые должны обеспечивать полное "вскрытие" образца и не допускать потерь определяемых компонентов и загрязнений извне. В задачи аналитической входит развитие техники таких общих операций анализа, как измерение объемов, прокаливание.

Одна из задач аналитической химии-определение направлений развития аналит. приборостроения, создание новых схем и конструкций приборов (что чаще всего служит завершающей стадией разработки метода анализа), а также синтез новых аналит. реактивов.

Для количеств. анализа очень важны метрологич. характеристики методов и приборов. В связи с этим аналитическая изучает проблемы градуировки, изготовления и использования образцов сравнения (в т.ч. ) и др. ср-в обеспечения правильности анализа. Существ. место занимает обработка результатов анализа, в т. ч. с использованием ЭВМ. Для условий анализа используют теорию информации, мат. теорию полезности, теорию распознавания образов и др. разделы математики. ЭВМ применяются не только для обработки результатов, но и для управления приборами, учета помех, градуировки, ; существуют аналит. задачи, решаемые только с помощью ЭВМ, напр. орг. соединений с использованием теории искусств. интеллекта (см. Автоматизированный анализ).

Методы определения-осн. группа методов аналитической . В основе методов количеств. анализа лежит зависимость к.-л. измеримого св-ва, чаще всего физического, от состава образца. Эта зависимость должна описываться определенным и известным образом.

Для анализа необходимы разнообразные методы, поскольку каждый из них имеет свои достоинства и ограничения. Так, чрезвычайно чувствит. радиоактивационные и масс-спектральные методы требуют сложной и дорогостоящей аппаратуры. Простые, доступные и очень чувствит. кинетич. методы не всегда обеспечивают нужную воспроизводимость результатов. При оценке и сопоставлении методов, при выборе их для решения конкретных задач принимаются во внимание мн. факторы: метрологич. параметры, сфера возможного использования, наличие аппаратуры, квалификация аналитика, традиции и др. Важнейшие среди этих факторов - такие метрологич. параметры, как предел обнаружения или диапазон (кол-в), в к-ром метод дает надежные результаты, и точность метода, т.е. правильность и воспроизводимость результатов. В ряде случаев большое значение имеют "многокомпонентные" методы, позволяющие определять сразу большое число компонентов, напр. атомно-эмиссионный и рентгеновский

МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ)

Кафедра химии

Утверждаю Зав. кафедрой професор

И.М.Паписов "___" ____________ 2007 г.

А.А. ЛИТМАНОВИЧ, О.Е. ЛИТМАНОВИЧ

АНАЛИТИЧЕСКАЯ ХИМИЯ Часть 1. Качественный химический анализ

Методическое пособие

для студентов II курса специальности “Инженерная защита окружающей среды”

МОСКВА 2007

Литманович А.А., Литманович О.Е. Аналитическая химия: Ч. 1: Качественный химический анализ: Методическое пособие / МАДИ

(ГТУ) – М., 2007. 32 с.

Рассмотрены основные химические законы качественного анализа неорганических соединений и их применимость для определения состава объектов окружающей среды. Пособие предназначено для студентов специальности “Инженерная защита окружающей среды”.

© Московский автомобильно-дорожный институт (государственный технический университет), 2008

ГЛАВА 1. ПРЕДМЕТ И ЗАДАЧИ АНАЛИТИЧЕСКОЙ ХИМИИ. АНАЛИТИЧЕСКИЕ РЕАКЦИИ

1.1. Предмет и задачи аналитической химии

Аналитическая химия – наука о методах исследования состава веществ. С помощью этих методов устанавливают, какие химические элементы, в какой форме и в каком количестве содержатся в изучаемом объекте. В аналитической химии выделяют два больших раздела – качественный и количественный анализ. Поставленные задачи аналитическая химия решает с помощью химических и инструментальных методов (физических, физикохимических).

В химических методах анализа определяемый элемент переводят в соединение, обладающее такими свойствами, с помощью которых можно установить присутствие этого элемента или измерить его количество. Одним из основных способов измерения количества образующегося соединения является определение массы вещества путем взвешивания на аналитических весах – гравиметрический метод анализа. Методы количественного химического анализа и инструментальные методы анализа будут рассмотрены в части 2 методического пособия по аналитической химии.

Актуальным направлением развития современной аналитической химии является разработка методов анализа объектов окружающей среды, сточных и сбросовых вод, газовых выбросов промышленных предприятий и автомобильного транспорта. Аналитический контроль позволяет обнаруживать превышение содержания особо вредных компонентов в сбросах и выбросах, способствует выявлению источников загрязнения окружающей среды.

Химический анализ основан на фундаментальных законах общей и неорганической химии, с которыми Вы уже знакомы. Теоретические основы химического анализа включают: знание свойств водных растворов; кислотно-основных равновесий в водных

растворах; окислительно-восстановительных равновесий и свойств веществ; закономерностей реакций комплексообразования; условий образования и растворения твердой фазы (осадков) .

1.2. Аналитические реакции. Условия и способы их проведения

Качественный химический анализ проводят с помощью аналитических реакций , сопровождающихся заметными внешними изменениями: например, выделением газа, изменением окраски, образованием или растворением осадка, в ряде случаев – появлением специфического запаха.

Основные требования к аналитическим реакциям:

1) Высокая чувствительность , характеризуемая величиной предела обнаружения (Сmin ) – наименьшей концентрацией компонента в пробе раствора, при которой данная методика анализа позволяет уверенно обнаруживать этот компонент. Абсолютное минимальное значение массы вещества, которая может быть обнаружена путем аналитических реакций, составляет от 50 до 0.001 мкг (1 мкг = 10–6 г).

2) Избирательность – характеризуется способностью реагента вступать в реакцию как можно с меньшим числом компонентов (элементов). На практике обнаружение ионов стараются проводить в таких условиях, при которых избирательная реакция становитсяспецифической , т.е. позволяет обнаружить данный ион в присутствии других ионов. В качествепримеров специфических реакций (которых немного) можно привести следующие.

а) Взаимодействие солей аммония с избытком щелочи при нагревании:

NH4 Cl + NaOH → NH3 + NaCl + H2 O . (1)

Выделяющийся аммиак легко распознать по характерному запаху (“нашатырный спирт”) или по изменению окраски влажной индикаторной бумажки, поднесенной к горлышку пробирки. Реакция

позволяет обнаружить присутствие ионов аммония NH4 + в анализируемом растворе.

б) Взаимодействие солей двухвалентного железа с гексацианоферратом (III) калия K3 с образованием осадка синего цвета (турнбуллева синь, или берлинская лазурь). Реакция (хорошо Вам знакомая по теме ”Коррозия металлов” в курсе

Эти реакции позволяют обнаружить ионы Fe2+ и Fe3+ в анализируемом растворе.

Специфические реакции удобны тем, что определять присутствие неизвестных ионов можно дробным методом – в отдельных пробах анализируемого раствора, содержащего и другие ионы.

3) Быстрота протекания реакции (высокая скорость ) ипростота выполнения.

Высокая скорость реакции обеспечивает достижение термодинамического равновесия в системе за короткое время (практически со скоростью смешения компнентов при реакциях в растворе).

При выполнении аналитических реакций необходимо вспомнить, от чего зависит смещение равновесия реакции в нужном направлении и ее протекание до большой глубины превращения . Для реакций, протекающих в водных растворах электролитов, на смещение термодинамического равновесия влияют концентрация одноименных ионов, рН среды, температура . В частности, от температуры зависит величина констант равновесия – константы

диссоциации для слабых электролитов и произведения растворимости (ПР) для малорастворимых солей, оснований

Указанные факторы определяют глубину протекания реакции, выход продукта и точность определения анализируемого вещества (либо – саму возможность обнаружения определенного иона при малом количестве и концентрации анализируемого вещества).

Чувствительность некоторых реакций повышается в водноорганическом растворе, например, при добавлении в водный раствор ацетона или этанола. Например, в водно-этанольном растворе растворимость CaSO4 значительно ниже, чем в водном (значение ПР меньше), что позволяет однозначно обнаружить присутствие ионов Ca2+ в анализируемом растворе при гораздо меньших его концентрациях, чем в водном растворе, а также – наиболее полно освободить раствор от этих ионов (осаждением с помощью H2 SO4 ) для продолжения анализа раствора.

При качественном химическом анализе разрабатывается рациональная последовательность в разделении и обнаружении ионов – систематический ход (схема) анализа. При этом ионы выделяют из смеси группами, основываясь на их одинаковом отношении к действию определенных групповых реагентов.

Используется одна порция анализируемого раствора, из которой последовательно выделяют в виде осадков и растворов группы ионов, в которых затем обнаруживают отдельные ионы. Применение групповых реагентов позволяет разложить сложную задачу качественного анализа на ряд более простых. Отношение ионов к действию определенных

групповых реагентов положено в основу аналитической классификации ионов .

1.3. Предварительный анализ водного раствора, содержащего смесь солей, по цвету, запаху, значению рН

Наличие окраски прозрачного раствора, предложенного для анализа, может указывать на присутствие одного или сразу нескольких ионов (табл. 1). Интенсивность окраски зависит от концентрации иона в пробе, а сама окраска может изменяться, если

катионы металлов образуют более устойчивые комплексные ионы, чем комплексные катионы с молекулами H2 O в качестве лигандов, для которых и указана окраска раствора в табл. 1 .

Таблица 1

Цвет раствора

Возможные катионы

Возможные

Бирюзовый

Cu2+

Cr3+

Ni2+

MnO4 2-

Fe3+ (из-за гидролиза)

CrO4 2- , Cr2 O7 2-

Co2+

MnO4 -

Измерение рН предложенного раствора (если раствор приготовлен в воде, а не в растворе щелочи или кислоты) также

дает дополнительную

информацию о

возможном составе

Таблица 2

Собствен-

Возможные

Возможные

ный рН вод-

ного раство-

Гидролиз

Na+ , K+ , Ba2+ ,

SO3 2- , S2- , CO3 2- ,

образованной

Ca2+

CH3 COO-

металлы s-

(соответствующие

основанием

электронного

кислоты – слабые

слабой кислотой

семейства)

электролиты)

Гидролиз

NH4 +

Cl-, SO4 2- , NO3 - , Br-

образованной

(соответствующие

практически

кислотой

металлов

электролиты)

основанием

Гидролиз

Al3+ , Fe3+

основания

Водные растворы некоторых солей могут иметь специфические запахи в зависимости от рН раствора из-за образования неустойчивых (разлагающихся) или летучих соединений.Добавив к пробе раствора растворы NaOH или

сильной кислоты (HCl, H2 SO4 ), можно аккуратно понюхать раствор(табл. 3).

Таблица 3

рН пробы раствора

Соответствующий ион

после добавления

в растворе

Нашатырный спирт

NH4 +

(запах аммиака)

неприятный

SO3 2-

запах (SO2 )

“Уксус”

(уксусная

CH3 COO-

кислота CH3 COOH)

(сероводород H2 S)

Причиной появления запаха (см. табл. 3) является хорошо известное свойство реакций в растворах электролитов – вытеснение слабых кислот или оснований (часто это водные растворы газообразных веществ) из их солей сильными кислотами и основаниями соответственно .

ГЛАВА 2. КАЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ КАТИОНОВ

2.1. Кислотно-основной метод классификации катионов по аналитическим группам

В основе наиболее простого и наименее “вредного” кислотнощелочного (основного) метода качественного анализа лежит отношение катионов к кислотам и основаниям. Классификация катионов проводится по следующим признакам:

а) растворимость хлоридов, сульфатов и гидроксидов; б) основной или амфотерный характер гидроксидов;

в) способность к образованию устойчивых комплексных соединений с аммиаком (NH3 ) – аммиакатов (т.е. амминокомплексов) .

Все катионы подразделяются на шесть аналитических групп с помощью 4-х реагентов: 2М раствор HCl, 1М раствор H2 SO4 , 2М раствор NaOH и концентрированный водный раствор аммиака

NH4 OH (15-17%-ный) (табл. 4).

Таблица 4 Классификация катионов по аналитическим группам

Групповой

Результат

действия группового

реагента

Ag+ , Pb2+

Осадок: AgCl, PbCl2

1M H2 SO4

(Pb2+ ), Ca2+ ,

Осадок (белый): BaSO4 ,

Ba2+

(PbSO4 ), CaSO4

Al3+ , Cr3+ , Zn2+

Раствор: [Аl(OH)4 ]– ,

(избыток)

– , 2–

NH4 OH (конц.)

Fe2+ , Fe3+ , Mg2+ ,

Осадок: Fe(OH)2 ,

Mn2+

Fe(OH)3 , Mg(OH)2 ,

Mn(OH)2

NH4 OH (конц.)

Cu2+ , Ni2+ , Co2+

Раствор (окрашен):

2+ ,синий

2+ ,голубой

2+ , желтый (на

воздухе синеет из-за

окисления до Co3+ )

Отсутствует

NH4 + , Na+ , K+

Очевидно, что приведенный перечень катионов далеко не полный и включает наиболее часто встречающиеся на практике катионы в анализируемых образцах. Кроме того, существуют и другие принципы классификации по аналитическим группам .

2.2. Внутригрупповой анализ катионов и аналитические реакции их обнаружения

2.2.1. Первая группа (Ag+ , Pb2+ )

Исследуемый раствор, содержащий катионы Ag+ , Pb2+

↓ + 2М раствор HCl + C 2 H5 OH (для понижения растворимости PbCl2 )

Если ПК > ПР, образуются белые осадки смеси хлоридов,

которые отделяют от раствора (раствор не анализируется):

Ag+ + Cl– ↔ AgCl↓ и Pb2+ + 2Cl– ↔ PbCl2 ↓ (3)

Очевидно, что при малых концентрациях осаждаемых катионов концентрация анионов Cl– должна быть относительно большой

↓ К части осадка + H2 O (дистиллированная) + кипячение

В раствор переходят частично

В осадке – весь AgCl и

ионы Pb 2+ (смещение равновесия

частично PbCl2

(3) влево, т.к. ПК < ПР для PbCl2 )

↓ + NH4 OH (конц.)

Обнаружение в растворе,

1. Растворение AgCl из-за

отделенном от осадка:

комплексообразования:

1. С реагентом КI (после

AgCl↓+ 2NH4 OH(изб.) →

охлаждения):

→+ +Cl– +2H2 O

Pb2+ + 2I– → PbI2 ↓ (золотистые

кристаллы) (4)

↓+ 2М раствор HNO3

↓ до рН<3

2. Осаждение AgCl из-за

распада комплексного иона:

Cl– + 2HNO3

→AgCl↓+ 2NH4 + + 2NO3

↓ К 2-й части осадка смесихлоридов + 30%-ный

Предмет её как науки - совершенствование существующих и разработка новых методов анализа, их практическое применение, исследование теоретических основ аналитических методов.

В зависимости от задания, аналитическая химия подразделяется на качественный анализ , нацеленный на определение того, что или какие вещества, в какой форме находится в образце, и количественный анализ , нацеленный на определение сколько данного вещества (элементов, ионов , молекулярных форм и др.) находится в образце.

Определение элементного состава материальных объектов называют элементным анализом . Установление строения химических соединений и их смесей на молекулярном уровне называют молекулярным анализом . Одним из видов молекулярного анализа химических соединений является структурный анализ, направленный на исследование пространственного атомного строения веществ, установление эмпирических формул, молекулярных масс и др. В задачи аналитической химии входит определение характеристик органических, неорганических и биохимических объектов. Анализ органических соединений по функциональным группам называют функциональным анализом .

История

Аналитическая химия существует с тех пор, как существует химия в современном её смысле, а многие применяемые в ней приемы относятся к ещё более ранней эпохе, эпохе алхимии , одной из главных задач которой было именно определение состава различных природных веществ и изучение процессов их взаимных превращений. Но, по мере развития всей химии в целом, значительно совершенствовались и применяемые в ней методы работы, и, наряду со своим чисто служебным значением одного из вспомогательных отделов химии, аналитическая химия в настоящее время время имеет значение совершенно самостоятельного отдела химического знания с очень серьезными и важными задачами теоретического характера. Очень важное влияние на развитие аналитической химии имела современная физическая химия , обогатившая её рядом совершенно новых методов работы и теоретических оснований, к числу которых нужно отнести учение о растворах (см.), теорию электролитической диссоциации, закон действующих масс (см. Химическое равновесие) и все вообще учение о химическом сродстве.

Методы аналитической химии

Сравнение методов аналитической химии

Совокупность традиционных методов определения состава вещества путём его последовательно химического разложения получила название «мокрой химии» («мокрый анализ»). Эти методы обладают относительно низкой точностью, требуют относительно невысокой квалификации аналитиков и ныне почти полностью вытеснены современными инструментальными методами (оптическими, масс-спектрометрическими, электрохимическими, хроматографическими и другими физико-химическими методами) определения состава вещества. Однако у мокрой химии есть своё преимущество перед спектрометрическими методами - она позволяет путем проведения стандартизованных процедур (систематический анализ) напрямую определять состав и разные окислительные состояния элементов, таких как железо (Fe +2 , Fe +3), титан и др.

Аналитические методы можно разделить на валовые и локальные. Для валовых методов анализа обычно требуется отделённое, подробленное вещество (представительная проба). Локальные методы определяют состав вещества в небольшом объёме в самом образце, что позволяет составлять «карты» распределения химических свойств образца по его поверхности и/или глубине. Следует также выделить методы прямого анализа , то есть не связанного с предварительной подготовкой пробы. Часто подготовка проб необходима (напр., дробление, предварительное концентрирование или разделение). При подготовке проб, интерпретации результатов, оценке числа анализов используются статистические методы .

Методы качественного химического анализа

Для определения качественного состава какого-либо вещества необходимо изучить его свойства, которые с точки зрения аналитической химии, могут быть двоякого рода: свойства вещества как такового, и свойства его в химических превращениях.

К числу первых относятся: физическое состояние (твёрдое вещество, жидкость, газ), структура его в твердом состоянии (аморфное или кристаллическое вещество), цвет, запах, вкус и др. При этом нередко уже по одним только внешним свойствам, определяемым при помощи органов чувств человека, представляется возможным установить природу данного вешества. В большинстве же случаев приходится превращать данное вещество в какое-либо новое с ясно выраженными характерными свойствами, пользуясь для этой цели некоторыми специально подбираемыми соединениями, носящими название реактивов .

Применяемые в аналитической химии реакции крайне разнообразны и находятся в зависимости от физических свойств и степени сложности состава изучаемого вещества. В том случае, когда химическому анализу подлежит заведомо чистое, однородное химическое соединение, работа производится сравнительно легко и быстро; когда же приходится иметь дело со смесью нескольких химических соединений, вопрос об её анализе значит, усложняется, и при производстве работы нужно держаться некоторой определённой системы для того, чтобы не просмотреть ни одного входящего в вещество элемента. В аналитической химии существует два рода реакций: реакции мокрым путём (в растворах) и реакции сухим путём .

Реакции в растворах

В качественном химическом анализе применяются только такие реакции в растворах, которые легко воспринимаются человеческими органами чувств, причём момент появления реакции узнаётся по одному из следующих явлений:

  1. образование нерастворимого в воде осадка,
  2. изменение окраски раствора,
  3. выделение газа.

Образование осадка в реакциях химического анализа зависит от образования какого-либо нерастворимого в воде вещества; если, например, к раствору какой-либо соли бария прибавить серной кислоты или растворимой в воде соли её, образуется белый порошкообразный осадок сернокислого бария :

BaCl 2 + H 2 SO 4 = 2HCl + BaSO 4 ↓

Имея в виду, что подобную же реакцию образования белого осадка под действием серной кислоты могут дать некоторые другие металлы, например, свинец , способный образовать нерастворимую сернокислую соль PbSO 4 , для полной уверенности в том, что это именно тот или другой металл, необходимо производить ещё поверочные реакции, подвергая соответственному исследованию образовавшийся в реакции осадок.

Для успешного проведения реакции образования осадков, кроме подбора соответственного реактива, необходимо ещё соблюдать ряд очень важных условий в отношении крепости растворов исследуемой соли и реактива, пропорции того и другого, температуры, продолжительности взаимодействия и т. д. При рассмотрении осадков, образующихся в реакциях химического анализа, необходимо обращать внимание на их внешний вид, то есть на цвет, структуру (аморфные и кристаллические осадки) и др., а равно на их свойства в отношении влияния на них нагревания, кислот или щелочей и т. д. При взаимодействии слабых растворов необходимо выжидать иногда образования осадка до 24-48 часов, при условии сохранения их при некоторой определенной температуре.

Реакция образования осадка, независимо от её качественного значения в химическом анализе, нередко применяется для отделения некоторых элементов друг от друга. С этой целью на раствор, содержащий соединения двух или нескольких элементов, действуют соответственным реактивом, способным перевести некоторые из них в нерастворимые соединения, и затем посредством фильтрования отделяют образовавшийся осадок от раствора (фильтрата), производя дальнейшее исследование их отдельно. Если взять, например, соли хлористого калия и хлористого бария и прибавить к ним серной кислоты, то образуется нерастворимый осадок сернокислого бария BaSO 4 , и растворимый в воде сернокислый калий К 2 SO 4 , каковые и могут быть разделены посредством фильтрования. При этом отделении осадка нерастворимого в воде вещества от раствора необходимо позаботиться прежде всего о том, чтобы он получил соответственную структуру, позволяющую без труда произвести работу фильтрования, а затем, собравши его на фильтре, необходимо тщательно отмыть его от посторонних примесей. По исследованиям В. Оствальда , нужно при этом иметь в виду, что при употреблении определенного количества воды для промывания более целесообразно промывать осадок много раз небольшими порциями воды, чем наоборот - немного раз большими порциями. Что касается успешности проведения самой реакции отделения какого-либо элемента в виде нерастворимого осадка, то, на основании теории растворов, В. Оствальд установил, что для достаточно полного отделения какого-либо элемента в виде нерастворимого осадка необходимо всегда брать избыток реактива, служащего для осаждения.

Изменение окраса раствора является одним из очень важных признаков в реакциях химического анализа и имеет очень важное значение, в особенности в связи с процессами окисления и восстановления, а равно в работах с химческими индикаторами (см. ниже - алкалиметрия и ацидиметрия).

Примерами цветных реакций в качественном химическом анализе могут служить следующие: роданистый калий KCNS дает характерное кровяно-красное окрашивание с солями окиси железа; с солями закиси железа тот же реактив не дает ничего. Если к раствору хлористого железа FeCl 2 , слабо-зелёного цвета прибавить какой-либо окислитель, например, хлорную воду , происходит окрашивание раствора в жёлтый цвет благодаря образованию хлорного железа , являющегося высшей степенью окисления этого металла. Если взять дихромат калия K 2 Cr 2 O 7 оранжевого цвета и прибавить к нему в растворе немного серной кислоты и какого-нибудь восстановителя, например, винного спирта , происходит изменение оранжевой окраски в тёмно-зеленую, соответствующую образованию низшей степени окисления хрома в виде соли сернокислого хрома Cr 3 (SO 4) 3 .

В зависимости от хода химического анализа в нём нередко приходится производить эти процессы окисления и восстановления . Важнейшими окислителями служат: галогены , азотная кислота , перекись водорода , марганцовокислый калий , двухромокислый калий ; важнейшими восстановителями являются: водород в момент выделения, сернистый водород , сернистая кислота , хлористое олово , иодистый водород .

Реакции выделения газов в растворах при производстве качественного химического анализа чаще всего не имеют самостоятельного значения и являются реакциями вспомогательными; чаще всего приходится встречаться с выделением углекислого газа CO 2 - при действии кислот на углекислые соли, сернистого водорода - при разложении сернистых металлов кислотами и т. п.

Реакции сухим путём

Эти реакции применяются в химическом анализе, главным образом, при т. н. «предварительном испытании», при испытании осадков на чистоту, для поверочных реакций и при исследовании минералов. Важнейшие реакции этого рода состоят в испытании вещества в отношении:

  1. плавкости его при нагревании,
  2. способности окрашивать несветящееся пламя газовой горелки,
  3. летучести при нагревании,
  4. способности к окислению и восстановлению.

Для производства этих испытаний пользуются в большинстве случаев несветящимся пламенем газовой горелки. Главные составные части светильного газа (водород, окись углерода, болотный газ и др. углеводороды) являются восстановителями, но при горении его на воздухе (см. Горение) образуется пламя, в различных частях которого можно найти условия, необходимые для восстановления или окисления, а равно для нагревания до более или менее высокой температуры.

Испытание на плавкость проводится преимущественно при исследовании минералов для чего очень небольшой осколочек их, укреплённый в тонкой платиновой проволоке, вносится в часть пламени, обладающую наиболее высокой температурой, и затем при помощи лупы наблюдают, насколько закругляются края пробы.

Испытание на окрашивание пламени производится внесением небольшой пробы сепием небольшой пробы вещества на платиновой проволоке сперва в основание пламени, а затем в часть его с наиболее высокой температурой.

Испытание на летучесть производится нагреванием пробы вещества в пробирном цилиндре или в запаянной с одного конца стеклянной трубочке, причём летучие вещества превращаются в пары, которые затем конденсируются в более холодной части.

Окисление и восстановление в сухом виде можно производить в шариках сплавленной буры ( 2 4 7 + 10 2 ) Испытуемое вещество вводится в небольшом количестве в шарики, полученные расплавлением этих солей на платиновой проволоке, а затем они подвергаются нагреванию в окислительной или восстановительной части пламени. Восстановление можно производить ещё рядом других способов, а именно: нагреванием на обугленной с содою палочке, накаливанием в стеклянной трубке с металлами - натрием , калием или магнием , нагреванием ва древесном угле при помощи паяльной трубки, простым нагреванием.

Классификация элементов

В основе классификации элементов, принятой в аналитической химии, лежит то же самое разделение их, какое принято в обшей химии, - на металлы и неметаллы (металлоиды), причём последние рассматриваются чаше всего в виде соответственных кислот. Для производства систематического качественного анализа каждый из этих классов элементов делится в свою очередь на группы с некоторыми общими групповыми признаками.

Металлы в аналитической химии распределяются по двум отделам, которые в свою очередь делятся на пять групп:

  1. Металлы, сернистые соединения которых расстворимы в воде - распределение металлов этого отдела по группам основано на свойствах их углекислых солей. 1-я группа : калий , натрий , рубидий , цезий , литий . Сернистые соединения и углекислые соли их растворимы в воде. Общего реактива для осаждения всех металлов этой группы в виде нерастворимых соединений не имеется. 2-я группа : барий , стронций , кальций , магний . Сернистые соединения растворимы в воде, углекислые соли не растворимы. Общий реактив, осаждающий все металлы этой группы в виде нерастворимых соединений, - углекислый аммоний .
  2. Металлы, сернистые соединения которых не расстворимы в воде - для разделения этого отдела на три группы пользуются отношением их сернистых соединений к слабым кислотам и к сернистому аммонию. 3-я группа : алюминий , хром , железо , марганец , цинк , никель , кобальт .

Алюминий и хром водным путём не образуют сернистых соединений; остальные металлы образуют сернистые соединения, которые так же, как окислы их, растворимы в слабых кислотах. Из кислого раствора сернистый водород их не осаждает, сернистый аммоний осаждает окислы или сернистые соединения. Сернистый аммоний - общий реактив на эту группу, причём избыток его сернистых соединений не растворяет. 4-я группа : серебро , свинец , висмут , медь , палладий , родий , рутений , осмий . Сернистые соединения не растворимы в слабых кислотах и осаждаются сероводородом в кислом растворе; они не растворимы также в сернистом аммонии. Сернистый водород - общий реактив на эту группу. 5-я группа: олово , мышьяк , сурьма , золото , платина . Сернистые соединения также не растворимы в слабых кислотах и осаждаются сероводородом из кислого раствора. Но они растворимы в сернистом аммонии и образуют с ним растворимые в воде сульфасоли.

Неметаллы (металлоиды) приходится открывать в химическом анализе всегда в виде образуемых ими кислот или соответствующим им солей. Основанием для разделения кислот на группы служат свойства их бариевых и серебряных солей в отношении растворимости их в воде и отчасти в кислотах. Хлористый барий представляет общий реактив на 1-ю группу, азотнокислое серебро в азотнокислом растворе - на 2-ю группу, бариевые и серебряные соли 3-й группы кислот растворимы в воде. 1-я группа : в нейтральном растворе хлористый барий осаждает нерастворимые соли; соли серебра не растворимы в воде, но растворимы в азотной кислоте. Сюда относятся кислоты: хромовая , серноватистая , сернистая , водная, угольная , кремниевая , серная , кремнефтористоводородная (бариевые соли, не растворимые в кислотах), мышьяковая и мышьяковистая . 2-я группа : в растворе, подкисленном азотной кислотой, азотнокислое серебро даёт осадок. Сюда относятся кислоты: соляная , бромистоводородная и иодистоводородная , цианистоводородная , сернистый водород , железо- и железистоцианистоводородные и йодноватая . 3-я группа : азотная кислота и хлорноватая кислота, которые не осаждаются ни азотнокислым серебром, ни хлористым барием.

Нужно, однако, иметь в виду, что указанные для кислот реактивы не являются общими реактивами, которыми можно было бы воспользоваться для разделения кислот на группы. Эти реактивы могут только дать указание на присутствие кислотной или другой группы, а для открытия каждой отдельной кислоты приходится пользоваться принадлежащими им частными реакциями. Приведенная классификация металлов и неметаллов (металлоидов) для целей аналитической химии принята в русской школе и лабораториях (по Н. А. Меншуткину), в западноевропейских лабораториях принята другая классификация, основанная, однако, по существу, на тех же принципах.

Теоретические основания реакций

Теоретические основания реакций качественного химического анализм в растворах нужно искать, как уже было выше указано, в отделах общей и физической химии о растворах и о химическом сродстве. Одним из первых, важнейших вопросов является состояние всех минеральных в водных растворах, в которых, согласно теориии электролитической диссоциации , все вещества, относящиеся к классам солей, кислот и щелочей, диссоциируют на ионы . Поэтому все реакции химического анализа происходят не между цельными молекулами соединений, а между их ионами. Например, реакция хлористого натрия NaCl и азотнокислого серебра AgNO 3 происходит по уравнению:

Na + + Cl - + Ag + + (NO 3) - = AgCl↓ + Na + + (NO 3) - натрий-ион + хлор-ион + ион ceребра + анион азотной кислоты = нерастворимая соль + анион азотной кислоты

Следовательно, азотнокислое серебро есть реактив не на хлористый натрий или соляную кислоту, а только на хлор-ион. Таким образом, для каждой находящейся в растворе соли с точки зрения аналитической химии нужно рассматривать отдельно её катион (ион металла) и анион (кислотный остаток). Для свободной кислоты нужно рассматривать ионы водорода и анион; наконец, для каждой щёлочи - катион металла и анион-гидроксил. И по существу важнейшая задача качественного химического анализа заключается в изучении реакций разнообразных ионов и способов открытия их и отделения друг от друга.

Для достиения последней цели действием соответственных реактивов ионы превращают в нерастворимые соединения, выпадающие из раствора в виде осадков, или же выделяют из растворов в виде газов. В той же теории электролитической диссоциации нужно искать объяснения действия химических индикаторов , которые часто находят себе применение в химическом анализе. По теории В. Оствальда , все химические индикаторы относятся к числу сравнительно слабых кислот, частично диссоциированных в водных растворах. При этом некоторые из них имеют бесцветные целые молекулы и окра- шенные анионы, другие, наоборот, - окрашенные молекулы и бесцветный анион или же анион другой окраски; подвергаясь влиянию свободных водород-ионов кислот или гидроксил-ионов щёлочи, химические индикаторы могут изменять степень своей диссоциации, а вместе с тем свою окраску. Важнейшими индикаторами являются:

  1. Метилоранж , который в присутствии свободных водород-ионов (кислая реакция) дает розовую окраску, а в присутствии нейтральных солей или щелочей дает жёлтую окраску;
  2. Фенолфталеин - в присутствии гидроксил-ионов (щелочная реакция) дает характерное красное окрашивание, а в присутствии нейтральных солей или кислот бесцветен;
  3. Лакмус - под влиянием кислот краснеет, а под влиянием щелочей синеет, и, наконец,
  4. Куркумин - под влиянием щелочей буреет, а в присутствии кислот вновь принимает жёлтую окраску.

Химические индикаторы имеют очень важное применение в объёмном химическом анализе (см. ниже). В реакциях качественного химического анализа нередко также приходится встречаться с явлением гидролиза , то есть разложения солей под влиянием воды, причём водный раствор приобретает более или менее сильную щелочную или кислотную реакцию.

Ход качественного химического анализа

При качественном химическом анализе важно определить не только какие элементы или соединения входят в состав данного вещества, но также и то, в каких, примерно, относительных количествах находятся эти составные части. Для этой цели необходимо исходить всегда из определённых количеств анализируемого вещества (достаточно обыкновенно брать 0,5-1 грамм) и при производстве анализа сравнивать величину отдельных осадков между собою. Необходимо также применять растворы реактивов определенной крепости, а именно: нормальные, полунормальные, в одну десятую нормального.

Каждый качественный химический анализ распадается на три части:

  1. предварительное испытание,
  2. открытие металлов (катионов),
  3. открытие неметаллов (металлоидов) или кислот (анионов).

В отношении природы анализируемого вещества могут встретиться четыре случая:

  1. вещество твердое не металлическое,
  2. вещество твердое в виде металла или сплава металлов,
  3. жидкость (раствор),

При анализе твёрдого неметаллического вещества прежде всего производится внешний осмотр и микроскопическое исследование, а также предварительное испытание указанными выше способами анализа в сухом виде. Затеи проба вещества растворяется, в зависимости от природы его, в одном из следующих растворителей: вода, соляная кислота , азотная кислота и царская водка (смесь соляной и азотной кислот). Вещества, неспособные растворяться ни в одном из указанных растворителей, переводятся в раствор некоторыми специальными приемами, как-то: сплавлением с содой или поташом , кипячением с раствором соды, нагреванием с некоторыми кислотами и др. Полученный раствор подвергается систематическому анализу с предварительным выделением металлов и кислот по группам и дальнейшим разделением их на отдельные элементы, пользуясь свойственными им частными реакциями.

При анализе сплава металлов определенная проба его растворяется в азотной кислоте (в редких случаях в царской водке), и полученный раствор выпаривается досуха, после чего твёрдый остаток растворяется в воде и подвергается систематическому анализу.

Если вещество представляет жидкость , прежде всего обращается внимание на её цвет, запах и реакцию на лакмус (кислотная, щелочная, нейтральная). Чтобы удостовериться в присутствии в растворе каких-либо твёрдых веществ, небольшую порцию жидкости выпаривают на платиновой пластинке или часовом стекле. После этих предварительных испытаний жидкость апализируется обычными методами.

Анализ газов производится некоторыми специальными методами, указываемыми в количественном анализе.

Методы количественного химического анализа

Количественный химический анализ имеет целью определение относительного количества отдельных составных частей какого-либо химического соединения или смеси. Применяемые в нём методы находятся в зависимости от качеств, состава вещества, и потому количественному химическому анализу дол- жен предшествовать всегда качественный химический анализ

Для производства количественного анализа можно применять два различных метода: весовой и объемный. При весовом методе определяемые тела выделяются в виде, по возможности, нерастворимых или трудно растворимых соединений известного химического состава, и определяется вес их, на основании которого можно найти количество искомого элемента вычислением. При объёмном анализе измеряются объёмы титрованных (содержащих определенное количество реактива) растворов, употребляемых для анализа. Кроме того, различается ещё ряд специальных методов количественного химического анализа, а именно:

  1. электролитический , основанный на выделении отдельных металлов электролизом,
  2. колориметрический , производимый по сравнению интенсивности окраски данного раствора с окраской раствора определенной крепости,
  3. органический анализ , состоящий в сожжении органического вещества в углекислый газ С0 2 и воду Н 2 0 и в определении по количеству их относительного содержания в веществе углерода и водорода,
  4. газовый анализ , состоящий в определении некоторыми специальными методами качественного и количественного состава газов или их смеси.

Совершенно особую группу представляет медицинский химический анализ , обнимающий ряд различных методов исследования крови, мочи и других продуктов жизнедеятельности человеческого организма.

Весовой количественный химический анализ

Методы весового количественный химического анализа бывают двух родов: метод прямого анализа и метод непрямого (косвенного) анализа . В первом случае подлежащая определению составная часть выделяется в виде какого-либо нерастворимого соединения, и определяется вес последнего. Косвенный анализ основан на том, что два или несколько веществ, подвергающихся одной и той же химической обработке, претерпевают неодинаковое изменение их веса. Имея, например, смесь хлористого калия и азотнокислого натрия , можно определить первый из них прямым анализом, осадивши хлор в виде хлористого серебра и взвешивая его. Если же имеется смесь хлористых солей калия и натрия, можно определить отношение их непрямым методом путём осаждения всего хлора, в виде хлористого серебра, и определения его веса, с последующим вычислением.

Объёмный химический анализ

Анализ электролизом

Колориметрические методы

Элементарный органический анализ

Газовый анализ

Классификация методов аналитической химии

  • Методы элементного анализа
    • Рентгеноспектральный анализ (рентгено-флуоресцентный)
    • Нейтронно-активационный анализ (англ. ) (см. радиоактивационный анализ)
    • Электронная Оже-спектрометрия (ЭОС) (англ. ); см. эффект Оже
    • Аналитическая атомная спектрометрия - совокупность методов, основанных на преобразовании анализируемых проб в состояние отдельных свободных атомов, концентрации которых затем измеряются спектроскопически (иногда сюда же относят рентгено-флуоресцентный анализ, хотя он не основан на атомизации пробы и не связан со спектроскопией атомного пара).
      • МС - масс-спектрометрия с регистрацией масс атомарных ионов
        • ИСП-МС - масс-спектрометрия с индуктивно-связанной плазмой (см. индуктивно-связанная плазма в масс-спектрометрии)
        • ЛА-ИСП-МС - масс-спектрометрия с индуктивно-связанной плазмой и лазерной абляцией
        • ЛИМС - лазерно-искровая масс-спектрометрия; см. лазерная абляция (пример коммерческой реализации: ЛАМАС-10М)
        • МСВИ - Масс-спектрометрия вторичных ионов (SIMS)
        • ТИМС - термоионизационная масс-спектрометрия (TIMS)
        • Высокоэнергетическая масс-спектрометрия на ускорителях частиц (AMS)
      • ААС - атомно-абсорбционная спектрометрия
        • ЭТА-ААС - атомно-абсорбционная спектрометрия с электротермической атомизацией (см. атомно-абсорбционные спектрометры)
        • СВЗР - спектроскопия времени затухания резонатора (CRDS)
        • ВРЛС - внутрирезонаторная лазерная спектроскопия
      • АЭС - атомно-эмиссионная спектрометрия
        • искра и дуга как источники излучения (см. искровой разряд ; электрическая дуга)
        • ИСП-АЭС - атомно-эмиссионная спектрометрия с индуктивно-связанной плазмой
        • ЛИЭС - лазерно-искровая эмиссионная спектрометрия (LIBS или LIPS); см. лазерная абляция
      • АФС - атомно-флуоресцентная спектрометрия (см. флуоресценция)
        • ИСП-АФС - атомно-флуоресцентная спектрометрия с индуктивно-связанной плазмой (приборы фирмы Baird)
        • ЛАФС - лазерная атомно-флуоресцентная спектрометрия
        • АФС на лампах с полым катодом (пример коммерческой реализации: AI3300)
      • АИС - атомно-ионизационная спектрометрия
        • ЛАИС (ЛИИС) - лазерная атомно-ионизационная или лазерно-интенсифицированная ионизационная спектроскопия (англ. Laser Enhanced Ionization, LEI )
        • РИМС - лазерная резонансно-ионизационная масс-спектрометрия
        • ОГ - оптогальваника (ЛОГС - лазерная оптогальваническая спектроскопия)
  • Другие методы анализа
    • титриметрия , объёмный анализ
    • весовой анализ - гравиметрия , электрогравиметрия
    • спектрофотометрия (обычно абсорбционная) молекулярных газов и конденсированных сред
      • электронная спектрометрия (видимый спектр и УФ-спектрометрия); см. электронная спектроскопия
      • колебательная спектрометрия (ИК-спектрометрия); см. колебательная спектроскопия
    • спектроскопия комбинационного рассеяния света ; см. эффект Рамана
    • люминесцентный анализ
    • масс-спектрометрия с регистрацией масс молекулярных и кластерных ионов, радикалов
    • спектрометрия ионной подвижности (