Получение и свойства синтетических волокон. Химические волокна и нити

Волокна – протяженные гибкие и прочные вещества ограниченной длины и малых поперечных размеров, пригодные для изготовления пряжи и текстильных изделий. О том, что такое натуральное и синтетическое волокно, говорим в статье.

Классификация волокон

Классификация волокон:

  • природные – волокна растительного происхождения (хлопок, лен – полисахариды (углеводы), имеющие состав (C 6 H 10 O 5)x) и животного происхождения (шерсть, шелк – белковые вещества, состоящие из длинных полипептидных цепей).
  • химические , которые делятся на искусственные волокна и на синтетические волокна. Искусственные волокна получают из продуктов химической переработки природных полимеров (целлюлозы), например, вискозное, медноаммиачное, ацетатное волокно. Синтетические волокна получают при химической обработке синтетических полимеров. Например, нейлон и капрон (полиамидные волокна), лавсан (полиэфирные волокна).

Синтетическое волокно

К синтетическим волокнам относят полиамидные , полиэфирные, полиакрилонитрильные, поливинилспиртовые, поливинилхлоридные, полипропиленовые, а также многие другие. К первым относят такие вещества, как капрон, анид, энант. Основные характеристики этих волокон – устойчивость к растяжению, стойкость к истиранию. Однако недостатки также имеют место быть: низкая гигроскопичность, небольшая термостойкость и высокая электризуемость. Это волокно используют при производстве трикотажных изделий, ниток, кружев, канатов и рыболовных сетей.

Рис. 1. Полиамидные волокна.

Полиамидное волокно не переносит высоких температур. Если его нагреть до 160 градусов, то прочность резко снижается вплоть до 50%.

К полиэфирным волокнам относятся лавсан, дакрон, терилен. Волокно имеет как преимущества, так и недостатки. К недостаткам можно отнести повышенную жесткость и сильную электризуемость. Лавсан часто используется для изготовления ткани для бытового назначения.

Рис. 2. Полиэфирные волокна.

К полиакрилонитрильным волокнам относятся, например, нитрон, орлон. Нитрон по внешним признакам напоминает шерсть. Нитрон очень прочный и упругий, и его эти свойства сохраняются в независимость от того, мокрый он или сухой. Однако по стойкости к истиранию нитрон уступает полиамидным и полиэфирным волокнам.

К поливинилхлоридным волокнам относится хлорин. По сравнению с другими синтетическими волокнами оно менее прочное, не такое упругое и менее стойкое к истиранию.

Рис. 3. Поливинилхлоридные волокна.

Хлорин имеет способность накапливать в себе электростатические заряды, поэтому его используют для производства лечебного белья

К поливинилспиртовым волокнам относится, например, винол. Отличительная особеность этого материала высокая гигроскопичность, эти волокна хорошо окрашиваются красителями и используются для производства трикотажа, ткани и ковров.

Что мы узнали?

Все существующие волокна можно разделить на 2 класса: химические и природные. синтетические волокна относятся к химическим волокнам. Они подразделяются на полиэфирные, полиамидные, поливинилхлоридные и многие другие. Также в статье представлены примеры синтетических волокон.

Тест по теме

Оценка доклада

Средняя оценка: 4.3 . Всего получено оценок: 93.

Введение………………………………………….…………………………3

1. Характеристики синтетических волокон………………………..…….3

2. Сырье для производства синтетических волокон……………………..4

3. Производство синтетических волокон…………………………………5

4. Применение синтетических волокон……………………….…………11

Список литературы……………………………………………………….12

Введение

Синтетические волокна изготовляют из полимерных материалов, полученных синтезом простых веществ (этилена, бензола, фенола, пропилена и др.), которые вырабатывают из нефтяных газов, нефти и каменноугольной смолы. Синтетические полимерные материалы, предназначенные для производства волокон, изготовляют на основе полимеризационных и поликонденсационных смол. В зависимости от условий проведения процессов полимеризации и поликонденсации получают молекулы полимеров, различные не только по величине, но и по строению. Современные методы синтеза высокомолекулярных соединений позволяют путем использования различных мономеров и изменения условий синтеза получать соединения любого состава и, следовательно, изменять свойства полимера и получаемых из него волокон в требуемом направлении. После получения исходного материала процесс производства синтетических волокон состоит из формования и процессов отделки. Формуют синтетические волокна из раствора, а также из расплава или размягченного полимера.
В настоящее время основную массу синтетических волокон используют в сочетании с природными и искусственными, что позволяет вырабатывать текстильные изделия, отвечающие требованиям потребителей.
Все синтетические волокна в зависимости от строения макромолекул делят на карбоцепные и гетероцепные. Из карбо-цепных волокон наиболее широко применяют полиакрилонитрильные, полихлорвиниловые, поливинилспиртовые, полиолефиновые, а из гетероцепных - полиамидные и полиэфирные.

Характеристики синтетических волокон

Синтетические волокна в отличие от природных и искусственных характеризуются малым влагопоглощением, поэтому изделия из них быстро высыхают. Малая чувствительность к влаге сказывается и на других свойствах этих волокон. Так, физико-механические свойства их почти не изменяются при погружении в воду. Эти волокна имеют высокую прочность как в воздушно-сухом состоянии, так и во влажном, что расширяет область их применения. Важное свойство синтетических волокон - химическая инертность. Так, капрон и анид устойчивы к действию щелочей, лавсан - к действию кислот, свойства хлорина не изменяются под воздействием кислот, щелочей, окислителей и других реагентов. Синтетические волокна устойчивы к действию бактерий, микроорганизмов, плесени и моли.
Однако синтетические волокна различаются многими свойствами. Например, капроновое волокно характеризуется высокой устойчивостью к истиранию, волокно нитрон - к действию солнечного света и атмосферным влияниям, а лавсан - очень низким остаточным удлинением. Синтетические волокна имеют ряд недостатков. Так, малое влагопоглощение значительно затрудняет крашение этих волокон, способствует накоплению электростатических зарядов на их поверхности, снижает гигиенические свойства, что ограничивает использование этих волокон для выработки бельевых и детских изделий.


2. Сырье для производства синтетических волокон

Синтетические волокна – волокна, полученные путем синтеза полимеров, состоящих из природных низкомолекулярных веществ (С, Н, О, N и др.) в результате реакции полимеризации или поликонденсации. Полимеры синтезируют из продуктов переработки нефти, газа и каменного угля (бензола, фенола, этилена, ацетилена, аммиака, синильной кислоты), которые в огромных количествах получают на химических заводах. Меняя состав исходных продуктов, можно варьировать строение и свойства синтетических полимеров и получаемых из них волокон.

Синтетические волокна имеют химический состав, подобный которому не встретить среди природных материалов.

Синтетические волокна

На протяжении тысячелетий человечество использовало для своих нужд природные волокна растительного (лен, хлопок, пенька) и животного (шерсть, шелк) происхождения. Кроме того, применялись и минеральные материалы, например асбест.

Ткани, производимые из этих волокон, шли на изготовление одежды, технические нужды и т. п.

В связи с ростом населения Земли натуральных волокон стало не хватать. Именно поэтому возникла потребность в их заменителях.

Первую попытку получить искусственным путем шелк предпринял в 1855 г. француз Одемар на основе нитроцеллюлозы. В 1884 г. французский инженер Г. Шардоне разработал метод получения искусственного волокна – нитрошелка, и с 1890 г. было организовано широкое производство искусственного шелка нитратным способом с образованием нитей с помощью фильер. Особенно эффективным оказалось начавшееся в 90-х годах XIX в. производство шелка из вискозы. Впоследствии этот способ получил наиболее широкое распространение, и ныне вискозный шелк составляет примерно 85 % мирового производства искусственного волокна. В 1900 г. мировое производство вискозного шелка составило 985 тонн, в 1930 г. – около 200 тыс. тонн, а в 1950 г. производство вискозного шелка достигло почти 1600 тыс. тонн.

В 1920-х годах было освоено производство ацетатного шелка (из ацетилцеллюлозы). По внешнему виду ацетатный шелк почти неотличим от натурального. Он малогигроскопичен и, в отличие от вискозного шелка, не мнется. Ацетатный шелк широко применяется в электротехнике как изоляционный материал. Позже был открыт способ получения ацетатного волокна чрезвычайно большой прочности (шнур сечением в 1 см 2 выдерживает нагрузку в 10 тонн).

На основе успехов химии на протяжении XX в. в СССР, Англии, Франции, Италии, США, Японии и других странах была создана мощная промышленность искусственного волокна.

Накануне Первой мировой войны во всем мире производилось всего 11 тыс. тонн искусственного волокна, а спустя 25 лет производство искусственного волокна оттеснило производство натурального шелка. Если в 1927 г. производство вискозного и ацетатного шелка составляло около 60 тыс. тонн, то в 1956 г. мировая продукция искусственных – вискозных и ацетатных – волокон превысила 2 млн тонн.

Разница между натуральным, искусственным и синтетическим волокнами состоит в следующем. Природное (натуральное) волокно полностью создано самой природой, искусственное волокно сделано руками человека, а синтетическое – создано человеком на химических заводах. При синтезе синтетических волокон из более простых веществ получают более сложные высокомолекулярные соединения, тогда как искусственные материалы образуются за счет разрушения значительно более сложных молекул (например, молекул клетчатки при получении метилового спирта путем сухой перегонки древесины).

В 1935 г. американским химиком У. Карозерсом был открыт нейлон – первое синтетическое волокно. Карозерс сначала работал бухгалтером, но позже заинтересовался химией и поступил в Иллинойский университет. Уже на третьем курсе ему поручили читать лекции по химии. В 1926 г. Гарвардский университет избирает его профессором органической химии.

В 1928 г. в судьбе Карозерса произошел резкий поворот. Крупнейший химический концерн «Дюпон де Немур» пригласил его возглавить лабораторию органической химии. Ему создали идеальные условия: большой штат сотрудников, самое современное оборудование, свободу в выборе тематики исследований.

Это было связано с тем, что за год до этого концерн принял стратегию на теоретические исследования, полагая, что они в конце концов принесут значительную практическую пользу, а следовательно, и прибыль.

Так и случилось. Лаборатория Карозерса, исследуя полимеризацию мономеров, после трех лет упорной работы добивается выдающегося успеха – получает полимер хлоропрена. На основе его в 1934 г. концерн «Дюпон» начал промышленное производство одного из первых видов синтетического каучука – полихлоропрена (неопрена), по своим качествам способного с успехом заменить дефицитный натуральный каучук.

Однако главной целью своих исследований Карозерс считал получение такого синтетического вещества, которое можно было бы превращать в волокно. Используя метод поликомпенсации, которым он занимался еще в Гарвардском университете, Карозерс в 1930 г. получил в результате взаимодействия этиленгликоля и себациновой кислоты полиэфир, который, как выяснилось позже, легко вытягивался в волокно. Это было уже большим достижением. Однако практического применения это вещество не могло иметь, так как легко размягчалось от горячей воды.

Дальнейшие многочисленные попытки получить коммерческое синтетическое волокно оказались безуспешными, и Карозерс решил прекратить работу в этом направлении. Руководство концерна согласилось закрыть программу. Однако заведующий химическим отделом воспротивился такому исходу дела. С большим трудом он убедил Карозерса продолжить исследования.

Заново обдумывая результаты своей работы в поисках новых путей ее продолжения, Карозерс обратил внимание на недавно синтезированные полимеры, содержащие в молекуле амидные группы – полиамиды. Этот выбор оказался исключительно плодотворным. Опыты показали, что некоторые полиамидные смолы, протиснутые через фильеру, сделанную из тонкого медицинского шприца, образуют нити, из которых можно изготовлять волокно. Применение новых смол казалось весьма многообещающим.

После новых экспериментов Карозерс и его помощники 28 февраля 1935 г. получили полиамид, из которого можно было вырабатывать прочное, упругое, эластичное, водоустойчивое волокно. Эта смола, выделенная в результате реакции гексаметилендиамина с адипиновой кислотой, с последующим нагреванием в вакууме полученной соли (АГ), была названа «полимер 66», так как исходные продукты содержали по 6 атомов углерода. Поскольку над созданием этого полимера трудились одновременно в Нью-Йорке и Лондоне, то волокно из него получило название «нейлон» – по начальным буквам этих городов. Специалисты-текстильщики признали его пригодным для коммерческого производства пряжи.

В течение двух следующих лет ученые и инженеры «Дюпона» разрабатывали в лабораторных условиях технологические процессы производства промежуточных продуктов полимера и нейлоновой пряжи и конструировали опытно-заводскую химическую установку.

16 февраля 1937 г. нейлон был запатентован. После многих опытных циклов в апреле 1937 г. было получено волокно для экспериментальной партии чулок. В июле 1938 г. было завершено строительство опытного предприятия.

29 апреля 1937 г., через три дня после того как Карозерсу исполнился 41 год, он ушел из жизни, приняв цианистый калий. Выдающегося исследователя преследовала навязчивая идея, что он не состоялся как ученый.

Разработка нейлона обошлась в 6 млн долларов, дороже, чем любой другой продукт общественного пользования. (Для сравнения: на разработку телевидения США потратили 2,5 млн долларов.)

Внешне нейлон напоминает натуральный шелк и приближается к нему по химическому строению. Однако по своей механической прочности нейлоновое волокно превосходит вискозный шелк примерно в три раза, а натуральный – почти в два раза.

Компания «Дюпон» длительное время строго охраняла секрет производственного процесса нейлона. И даже сама изготавливала необходимое для этого оборудование. Как сотрудники, так и оптовые продавцы товара обязательно давали подписку о неразглашении информации, касающейся «нейлоновых секретов».

Первым коммерческим изделием, поступившим на рынок, стали зубные щетки с нейлоновой щетиной. Их выпуск начался в 1938 году. Нейлоновые чулки были продемонстрированы в октябре 1939 г., а с начала 1940-го в г. Вилмингтон стало производиться нейлоновое волокно, которое трикотажные фабрики покупали для изготовления чулок. Благодаря взаимной договоренности торговых фирм чулки конкурирующих между собой производителей появились на рынке в один день: 15 мая 1940 года.

Массовое производство изделий из нейлона началось только после Второй мировой войны, в 1946 году. И хотя с тех пор появились многие другие полиамиды (капрон, перлон и др.), нейлон все еще широко применяется в текстильной промышленности.

Если в 1939 г. мировое производство нейлона составило лишь 180 тонн, то в 1953 г. оно достигло 110 тыс. тонн.

Из нейлоновой пластмассы в 50-е годы прошлого века изготавливали судовые лопастные винты для судов малого и среднего тоннажа.

В 40–50-е годы XX в. появились и другие синтетические полиамидные волокна. Так, в СССР был наиболее распространен капрон. В качестве исходного сырья для его производства используется дешевый фенол, вырабатываемый из каменноугольной смолы. Из 1 т фенола можно получить около 0,5 т смолы, а из нее изготовить капрон в количестве, достаточном для изготовления 20–25 тыс. пар чулок. Капрон получают и из продуктов переработки нефти.

В 1953 г. впервые в мире в СССР в опытно-промышленном масштабе была осуществлена реакция полимеризации между этиленом и четыреххлористым углеродом и получен исходный продукт для промышленного производства волокна энант. Схема его производства была разработана коллективом ученых под руководством А. Н. Несмеянова.

По основным физико-механическим свойствам энант не только не уступал другим известным полиамидным волокнам, но и во многом превосходил капрон и нейлон.

В 50–60-е гг. прошлого века началось производство полиэфирных, полиакрилонитрильных синтетических волокон.

Полиэфирные волокна формируются из расплава полиэтилен-терефталата. Они обладают превосходной термостойкостью, сохраняя 50 % прочности при температуре 180 °C, огнестойки и атмосферостойкие. Устойчивы к действию растворителей и вредителей: моли, плесени и т. п. Нить из полиэфирных волокон используется для изготовления транспортерных лент, приводных ремней, канатов, парусов, рыболовных сетей, шлангов, в качестве основы для шин. Моноволокно применяется для производства сетки для бумагоделательных машин, струн для ракеток. В текстильной промышленности нить из полиэфирных волокон идет на изготовление трикотажа, тканей и т. п. К полиэфирным волокнам относится лавсан.

Полиакрилонитрильные волокна по своим свойствам близки к шерсти. Они устойчивы к действию кислот, щелочей, растворителей. Их применяют для изготовления верхнего трикотажа, ковров, тканей для костюмов. В смеси с хлопком и вискозным волокном полиакрилонитрильные волокна используют для изготовления белья, гардин, брезентов. В СССР эти волокна выпускались под торговым названием нитрон.

Многие синтетические волокна получают путем продавливания расплава или раствора полимера через фильеры диаметром от 50 до 500 микрометров в камеру с холодным воздухом, где происходит отвердение и превращение струек в волокно. Непрерывно образующуюся нить наматывают на бобину.

Отвердение ацетатных волокон происходит в среде горячего воздуха для испарения растворителя, а отвердение вискозных волокон – в осадительных ваннах со специальными жидкими реагентами. Вытяжка волокон на бобинах при формировании применяется для того, чтобы цепные полимерные молекулы приняли более четкий порядок.

На свойства волокон влияют разными методами: изменением скорости выдавливания, состава и концентрации веществ в ванне, меняя температуру прядильного раствора, ванны или воздушной камеры, варьируя размеры отверстия фильер.

Важной характеристикой прочностных свойств волокна является разрывная длина, при которой волокно разрывается под действием собственной тяжести.

У природного хлопкового волокна она изменяется от 5 до 10 км, ацетатного шелка – от 12 до 14, натурального – от 30 до 35, вискозного волокна – до 50 км. Волокна из полиэфиров и полиамидов имеют большую прочность. Так у нейлона разрывная длина доходит до 80 км.

Синтетические волокна потеснили натуральные во многих областях. Общий объем их производства практически сравнялся.

Данный текст является ознакомительным фрагментом.

Современные технологии коснулись всех сфер человеческой жизнедеятельности. Пожалуй, текстильная промышленность - самый яркий пример науки, поставленной на службу бытовой повседневности. Благодаря химическому синтезу человек научился получать волокна с заданными свойствами. Следует различать ткани искусственные и синтетические.

Синтетику производят из полимеров, полученных путем определенных химических реакций. Сырьем для нее служат нефтепродукты, природный газ или каменный уголь. Из синтетических тканей с особыми свойствами изготавливают спецодежду, защитную одежду для экстремальных условий, спортивную форму.

Искусственные волокна производят путем физической обработки сырья. Наиболее известным примером такой ткани является вискоза, получаемая из целлюлозы (древесины).

Ткани из синтетических волокон обладают рядом преимуществ и недостатков по сравнению с натуральными материалами.

Общие свойства синтетических волокон

Несмотря на все свое разнообразие, большинство искусственных материалов обладают общими особенностями. К достоинствам синтетических тканей относятся следующие качества.

  • Долговечность . Искусственные ткани имеют повышенную износостойкость, не подвержены гниению, порче вредителями и плесневыми грибками. Специальная технология отбеливания и последующего окрашивания волокна обеспечивает стойкость цвета. Некоторые группы синтетических тканей неустойчивы к воздействию солнечных лучей.
  • Легкость . Одежда из синтетики весит намного меньше, чем ее натуральные аналоги.
  • Быстро сохнут. Большинство синтетических волокон не впитывают влагу или имеют водоотталкивающие свойства, то есть обладают низкой гигроскопичностью.
  • Благодаря масштабному промышленному производству и дешевизне исходного сырья большинство искусственных тканей имеют низкую стоимость. При производстве получают высокую производительность труда и низкую себестоимость, что стимулирует развитие отрасли. Многие производители регулируют технологические характеристики материала в соответствии с пожеланиями крупных заказчиков.

Недостатки обуславливаются тем фактором, что искусственный материал может плохо влиять на живой организм.

  • Синтетика накапливает статическое электричество (электризуется).
  • Возможно возникновение аллергии, индивидуальная непереносимость химических компонентов.
  • Большинство искусственных тканей плохо впитывают влагу - соответственно, не впитывают пот и обладают низкими гигиеническими свойствами.
  • Не пропускают воздух - это также имеет значение для производства одежды и белья.

Некоторые свойства синтетических тканей могут иметь как положительный, так и отрицательный смысл в зависимости от того, как применяется материал. Например, если ткань не пропускает воздух, это негигиенично для Но верхняя спецодежда из такого материала будет весьма уместна для защиты от неблагоприятных погодных условий.

Производство синтетических тканей

Первые патенты на изобретение синтетических волокон относятся к периоду 30-х годов прошлого столетия. В 1932 году в Германии освоили выпуск поливинилхлоридного волокна. В 1935 году в лаборатории американской компании DuPont синтезировали полиамид. Материал получил название "нейлон". Промышленное производство его начали в 1938 году, а год спустя он получил широкое применение в текстильной промышленности.

В СССР курс на широкое внедрение достижений химической науки был взят в 60-х годах. Первоначально синтетику воспринимали как дешевый заменитель натуральных тканей, затем ее стали использовать для изготовления спецодежды и защитных костюмов. По мере развития научной базы стали создавать ткани с различными свойствами. Новые полимеры обладают неоспоримыми преимуществами по сравнению с натуральными тканями: они легче, прочнее и более устойчивы к воздействиям агрессивных сред.

Ткани искусственные и синтетические различаются по методу изготовления и показателям экономики производства. Сырье для производства синтетики намного дешевле и доступнее, поэтому именно эта отрасль промышленности получила приоритет в развитии. Макромолекулы волокна синтезируют из низкомолекулярных соединений. Современные технологии обеспечивают получение материала с заранее заданными характеристиками.

Нити формируют из расплавов или растворов. Они могут быть одиночными, комплексными или в виде жгутов для получения волокон определенной длины (затем из них производят пряжу). Кроме нитей, из исходной синтетической массы формируют пленочные материалы и штампованные изделия (детали обуви и одежды).

Разновидности синтетики

В настоящее время изобрели несколько тысяч химических волокон, и каждый год появляются новые материалы. По химической структуре все виды синтетических тканей делятся на две группы: карбоцепная и гетероцепная. Каждая группа подразделяется на подгруппы, обладающие сходными физическими и эксплуатационными свойствами.

Карбоцепная синтетика

Химическая цепочка макромолекулы карбоцепных синтетических тканей состоит в основном из атомов углерода (углеводородов). В группе выделяют следующие подгруппы:

  • полиакрилонитрильную;
  • поливинилхлоридную;
  • поливинилспиртовую;
  • полиэтиленовую;
  • полипропиленовую.

Гетероцепная синтетика

Это ткани из синтетических волокон, в молекулярный состав которых, кроме углерода, включены атомы других элементов: кислорода, азота, фтора, хлора, серы. Такие включения придают исходному материалу дополнительные свойства.

Виды синтетических тканей гетероцепной группы:

  • полиэфирные;
  • полиамидные;
  • полиуретановые.

Лайкра: полиуретановые синтетические ткани

Названия, применяемые торговыми корпорациями: эластан, лайкра, спандекс, неолан, дорластан. Полиуретановые нити способны к обратимым механическим деформациям (наподобие резины). Эластан способен растягиваться в 6-7 раз, свободно возвращаясь в исходное состояние. Имеет низкую температурную устойчивость: при повышении температуры до +120 °С волокно теряет свою эластичность.

Полиуретановые нити не применяют в чистом виде - их используют в качестве каркаса, навивая вокруг другие волокна. Материал, содержащий такую синтетику, обладает эластичностью, хорошо растягивается, упругий, устойчивый к истиранию, прекрасно пропускает воздух. Вещи из тканей с добавлением полиуретановых нитей не мнутся и сохраняют первоначальную форму, устойчивы к свету, долго сохраняют первоначальный цвет. Ткань не рекомендуется сильно отжимать, перекручивать, сушить в растянутом виде.

Капрон: полиамидная синтетика

Свое название материал получил благодаря амидной группе, входящей в состав ткани. Капрон и нейлон - наиболее известные представители этой группы. Основные свойства: повышенная прочность, хорошо держит форму, не подвержен гниению, легкий. В свое время капрон заменил шелк, применяемый для изготовления парашютов.

У синтетических волокон полиамидной группы низкая устойчивость к повышенным температурам (начинает плавиться при +215 °С), они желтеют на свету и под воздействием пота. Материал не впитывает влагу и быстро сохнет, накапливает и плохо удерживает тепло. Из него производят женские колготки и леггинсы. В состав ткани капрон и нейлон вводят в количестве 10-15%, что повышает прочность натуральных материалов без ухудшения их гигиенических свойств. Из таких материалов производят носки и

Другие торговые названия синтетических материалов полиамидной группы: анид, перлон, мерил, таслан, джордан и хеланка.

Велсофт - толстая ткань с ворсом, составляет конкуренцию махре. Из него шьют детскую одежду, халаты и пижамы, вещи для дома (полотенца и пледы). Материал приятен на ощупь, хорошо пропускает воздух, не мнется, не садится, не линяет. Устойчив к стирке, быстро сохнет. Набивной рисунок не выцветает со временем.

Лавсан: полиэфирные волокна

Полиэфирная синтетика обладает повышенной упругостью, износостойкостью, ткани из нее не садятся, не мнутся и хорошо держат форму. Основное достоинство по сравнению с другими группами синтетических тканей - повышенная термостойкость (выдерживает свыше +170 °С). Материал жесткий, не впитывает влагу, не собирает пыль, не выгорает на солнце. В чистом виде его используют для изготовления штор и занавесок. В смеси с применяют для изготовления плательных и костюмных тканей, а также материала для пальто и Полиэфирное волокно обеспечивает устойчивость к истиранию и сминанию, а натуральные нити обуславливают гигиеничность, которой не обладают синтетические ткани. Названия тканей из полиэфирных материалов: лавсан, полиэстер, терилен, тревира, тергаль, диолен, дакрон.

Флис - синтетическая мягкая ткань из полиэстера, по виду похожа на овечью шерсть. Одежда из флиса мягкая, легкая, теплая, воздухопроницаемая, эластичная. Материал легко стирается, быстро сохнет и не нуждается в глажке. Флис не вызывает аллергию, поэтому широко применяется для изготовления детской одежды. Со временем ткань растягивается и теряет форму.

Полисатин изготавливают из полиэстера в чистом виде или в комбинации с хлопком. Материал плотный, гладкий и слегка блестящий. Быстро сохнет, не садится, не изнашивается, не линяет. Применяют для изготовления постельного белья, изделий для дома (штор, скатертей, обивки для мебели), домашней одежды, галстуков и шарфов. Очень популярное сегодня постельное белье с 3D-рисунком изготавливают именно из полисатина.

Акрил: полиакрилонитрильные материалы

По механическим свойствам близок к волокнам шерсти, поэтому акрил иногда называют «искусственной шерстью». Синтетика устойчива к солнечным лучам, она термостойкая, прекрасно держит форму. Не впитывает влагу, жесткая, электризуется, истирается.

Применяют в комбинации с шерстью для производства ткани для мебели, детских матрасов, пошива верхней одежды и изготовления искусственного меха. Акрил не образует катышков, что делает его незаменимой добавкой в шерстяную пряжу для вязания. Вещи из комбинированной пряжи меньше растягиваются, они более прочные и легкие.

Торговые названия полиакрилонитрильных материалов: акрилан, нитрон, кашмилон, дралон, долан, орлон.

Спектра и дайнема: полиолефиновые волокна

В этой группе различают полиэтиленовые и Наиболее легкие из всех видов синтетики, полиолефиновые материалы не тонут в воде, отличаются низкой гигроскопичностью и хорошими теплоизоляционными свойствами, растяжимость волокна практически равна нулю. Имеют низкую температурную устойчивость - до +115 °С. Применяются при создании двухслойных материалов, для пошива спортивной и рыбацкой одежды, фильтровальных и обивочных материалов, брезента, ковров. В комбинации с натуральными волокнами - для производства нижнего белья и чулочно-носочных изделий.

Торговые названия: спектра, дайнема, текмилон, геркулон, ульстрен, найден, мераклон.

Поливинилхлоридные синтетические ткани

Материал отличается высокой устойчивостью к химически агрессивным веществам, низкой электропроводностью и неустойчивостью к температурным воздействиям (разрушается при 100°С). После температурной обработки дает усадку.

В чистом виде из него изготавливают защитную спецодежду. С его помощью получается плотная синтетическая ткань - искусственная кожа, также изготавливают искусственный мех и ковровые покрытия.

Торговые названия: тевирон, хлорин, виньон.

Поливинилспиртовые волокна

К этой группе относятся винол, мтилан, винилон, куралон, виналон. Они обладают всеми достоинствами синтетики: прочные, износоустойчивые, устойчивы к свету и температурным воздействиям. По растяжимости и упругости имеют средние показатели. Отличительная особенность - хорошо впитывают влагу, изделия из синтетических тканей этой группы обладают высокой гигроскопичностью, сравнимой со свойствами хлопковых изделий. Под воздействием воды винол удлиняется и немного усаживается, его прочность понижается. По сравнению с другим химическими волокнами, он менее устойчив к химическим воздействиям.

Винол применяется для изготовления одежды, нижнего белья, в комбинации с хлопком и вискозой - для производства чулочно-носочных изделий. Материал не скатывается, не вытирается, имеет приятный блеск. Недостаток изделий из винола - они быстро загрязняются.

Мтилан используют для производства хирургических нитей.

Комбинация различных волокон дает интересные технологические характеристики. Яркий пример - широко известная на сегодняшний день микрофибра. Изготавливают ее из комбинации нейлоновых и полиэфирных волокон. Микрофибра не скатывается, не линяет, обладает повышенной гигроскопичностью, при этом быстро сохнет. Ее используют для производства трикотажных и нетканого полотна. В зависимости от толщины волокна и его модификации варьируют мягкость и износостойкость конечного продукта. Микроволокно не смешивают с другими волокнами, уход за изделиями чрезвычайно прост - они не боятся стирки, химчистки и температурных воздействий. Благодаря множеству воздушных пор, ткань способствует поддержанию оптимальной температуры тела, но в то же время прекрасно защищает от ветра. Из микрофибры изготавливают спортивную и верхнюю одежду, домашний текстиль, салфетки и губки для клининга.

Как видим, химически синтезированные волокна широко применяются в производстве товаров легкой промышленности. Из них изготавливают спортивную и спецодежду, ткани для мебели и декорирования интерьера помещений, весь спектр повседневной одежды: от нижнего белья до материалов для пальто и искусственного меха. Современные ткани обладают рядом достоинств, недоступных их предшественникам: они могут быть гигроскопичными, «дышащими» и хорошо сохранять тепло. Комбинация различных волокон в одной нити, а также создание многослойных тканей позволяют производителям полностью удовлетворять запросы современного мира.

Современные технологии коснулись всех сфер жизнедеятельности человека. Лучшим примером того, как они развиваются, может служить текстильная промышленность: человечество научилось производить синтетические ткани.

Вискоза – разновидность искусственных тканей, изготовленных из целлюлозы. Данный вид полотна получается при переработке древесного сырья. Синтетические же ткани изготавливаются из полимеров, полученных благодаря химическим реакциям. Сырьем для материала являются нефтепродукты, уголь, газ. Как правило, из синтетических тканей производят спортивную одежду или вещи, необходимые для использования в экстремальных ситуациях.

Преимущества и недостатки синтетических тканей

Синтетический материал имеет свои достоинства и недостатки. Несмотря на все обилие натуральных тканей, существует ряд преимуществ синтетического материала.

  • Легкость ткани. В отличие от природных материалов, синтетическая ткань обладает незначительным весом.
  • Долговечность. Одежда из синтетического материала менее подвержена износу и хорошо сохраняет стойкость цвета. Это достигается за счет специальной обработки материи. Вот почему вещи можно носить долго, не боясь, что они полиняют. Однако некоторые виды портятся под воздействием ультрафиолетовых лучей.
  • Быстрая сушка. Практически все синтетические материалы не впитывают в себя много влаги, и сушка не занимает много времени.
  • Стоимость. Низкая цена материала достигается за счет невысокой стоимости исходного продукта. Предприятиям выгодно изготавливать такие ткани, вот почему с каждым годом увеличиваются объемы их производства.

Отрасль развивается с каждым днем. Производители ткани могут изменять характеристики полотна с учетом пожеланий крупных клиентов.

Самый большой минус подобных материалов в том, что они могут негативно влиять на здоровье. Синтетическая ткань электризуется из-за того, что накапливает статическое электричество. У человека может быть индивидуальная переносимость данной ткани. Она практически не впитывает влагу, следовательно, является не слишком гигиеничным материалом. Синтетика не способна пропускать воздух, поэтому белье из полиэстера или спандекса не слишком комфортно при каждодневном использовании.

С другой стороны, в непогоду синтетическая ткань будет крайне полезна – она сможет защитить человека от атмосферных осадков лучше, чем натуральная.


Особенности производства

Впервые патент на изготовление синтетической ткани был зарегистрирован в далеком 1930 году. Сначала научились выделять поливинилхлоридные волокна, затем немецкие ученые смогли получить полиамид. Такой материал стали называть . Производство его было поставлено на конвейер только в 1939 году.

В Советском Союзе одежду из синтетики начали производить только в конце 60-х годов. Вначале она являлась просто дешевым заменителем натуральной ткани. Только спустя много лет ей нашли должное применение: начали изготавливать спецодежду, отличавшуюся высокими характеристиками износостойкости и способную защитить человека от неблагоприятных факторов среды.

Искусственные и синтетические материалы отличаются по специфике производства, а также по стоимости исходного сырья. Синтетика не требует больших затрат. При изготовлении ткани происходит синтез волокна из низкомолекулярных соединений. Чтобы произвести материал, нужно сырье расплавить или растворить. После уже из тягучего материала можно выделить нить. Нитка может быть одиночной, комплексной либо закрученной в виде жгута. Также из расплавленного материала могут изготавливаться отдельные части одежды и обуви.


Из чего делают синтетический текстиль?

Сегодня существует множество видов синтетических волокон. Специалистами постоянно производятся новые разновидности материала. Однако для удобства их подразделяют на две группы, каждая из которых обладает своими особенностями.

Карбоцепная синтетика

При ее производстве используют углеводород. Данная разновидность объединяет следующий список тканей:

  • полиэтиленовые;
  • полиакрилонитрильные;
  • полипропиленовые;
  • поливинилхлоридные;
  • поливинилспиртовые.


Гетероцепная синтетика

Данный вид ткани производится не только из углеводорода, но и из других химических элементов. Это могут быть азот, хлор, фтор. Элементы способствуют улучшению характеристик материи.

В указанную группу входят следующие ткани:

  • полиуретановые.
  • полиамидные.

Благодаря указанным веществам вещи на основе гетероцепной синтетики добавляют к обычным характеристикам дополнительные качества, незаменимые при пошиве спецодежды.


Виды и названия синтетических тканей

Итак, текстильная промышленность на данном этапе своего развития позволяет получать самые разные виды синтетической материи. Но как не растеряться в таком ассортименте и выяснить, какая ткань отвечает всем необходимым критериям? Приведем краткие характеристики наиболее популярных разновидностей синтетики.

  • Лавсан

Обладает высокими показателями износостойкости. Ткань не садится, способна выдержать сильные температурные изменения, вплоть до + 115 градусов. Длительное время держит форму. Материал на ощупь жесткий, не пропускает воду. Полотно чаще всего используют при изготовлении гардин. Намного реже его добавляют в натуральное сырье для производства костюмов – это позволяет увеличить износостойкость изделий.

  • Флис

Изготавливается из синтетического волокна. По внешнему виду напоминает натуральную шерсть. Очень мягкий, теплый материал. Обладает эластичностью и способен пропускать воздух. Материал прост в уходе, легко стирается и чистится. Главное - его не нужно долго сушить и гладить, что значительно экономит время. Часто ткань используют при производстве детской одежды. Недостатком является быстрая потеря формы из-за того, что при повседневной носке вещь растягивается. Флис способен накапливать статическое электричество.

  • Полисатин

Производится с добавлением хлопка или полиэстера. Материал имеет ряд преимуществ. Он легко стирается, не мнется, не теряет форму, имеет блестящую поверхность. Зачастую он используется при производстве постельных комплектов, гардин, для обивки мебели. Модное и популярное постельное белье «с эффектом 3D» нередко производят из данного типа ткани.

  • Акрил

Это ткань, внешне напоминающая шерсть, однако она намного практичнее натурального волокна. Длительное время сохраняет форму, не пропускает влагу. Материал не подвержен ультрафиолетовым лучам, просто чистится, не садится. Его используют и в сочетании с шерстью.

Акрил используется для пошива верхней одежды. В сочетании с шерстью из него также производят детские матрасы, т. к. данная ткань не способна впитывать воду. При совмещении с натуральными волокнами он придает вещам прочность. Акрил не образует катышков и способен длительное время держать форму. Однако есть у него и небольшой недостаток - вещи из данного полотна сильно электризуются. Акрил часто добавляют в нитки для вязания.

  • Дайнема и спектра

В данной группе различают два типа волокон - полиэтиленовые и полипропиленовые. Они являются самыми легкими в категории синтетических тканей. Такое полотно невозможно утопить в воде. Оно обладает термостойкостью. Материал не поддается растягиванию, устойчив к любым погодным изменениям.

Выдерживает температуру до +115 градусов. Широко применяется при производстве туристической и специализированной одежды, например для рыболовов, горнолыжников, скалолазов, охотников. Также материал используется для и чулочно-носочной продукции. Однако для этой цели обязательно берется ткань из натуральных волокон.


Итог

Каждый год производство изделий из синтетических тканей растет вследствие того, что исходное сырье стоит дешево. Также улучшаются функциональные характеристики изделий и их внешний вид.

Синтетические вещи обладают высокими теплозащитными свойствами. Они имеют низкую гигроскопичность, высокую гидрофобность и довольно прочны. Возможно, они не настолько комфортны, как натуральные волокна. Немало споров ведется и по поводу их безопасности для здоровья. Но вышеуказанные свойства позволяют им оставаться в числе перспективных вариантов для применения в текстильной промышленности.