Теплопроводность строительных материалов. Расчет толщины для наружных стен жилого дома Удельное сопротивление теплопередаче материалов таблица

Что такое теплопроводность? Знать об этой величине необходимо не только профессионалам-строителям, но и простым обывателям, решившим самостоятельно построить дом.

Каждый материал, используемый в строительстве, имеет свой показатель этой величины. Самое низкое его значение – у утеплителей, самое высокое – у металлов. Поэтому необходимо знать формулу, которая поможет рассчитать толщину как возводимых стен, так и теплоизоляции, чтобы получить в итоге уютный дом.

Сравнение проводимости тепла у самых распространённых утеплителей

Чтобы иметь представление о проводимости тепла разных материалов, предназначенных для утепления, нужно сравнить их коэффициенты (Вт/м*К), приведённые в следующей таблице:

Как видно из вышеприведённых данных, показатель проводимости тепла таких строительных материалов, как теплоизоляционные, варьируется от минимального (0,019) до максимального (0,5). Все теплоизоляционные материалы имеют определённый разброс показаний. СНиПы описывают каждый из них в нескольких видах – в сухом, нормальном и влажном. Минимальный коэффициент проводимости тепла соответствует сухому состоянию, максимальный – влажному.

Если задумано индивидуальное строительство

При возведении дома важно учитывать технические характеристики всех составляющих (материала для стен, кладочного раствора, будущего утепления, гидроизоляционных и пароотводящих плёнок, финишной отделки).

Для понимания, какие стены наилучшим образом будут сохранять тепло, нужно проанализировать коэффициент теплопроводности не только материала для стен, но и строительного раствора, что видно из таблицы ниже:

Номер п/п Материал для стен, строительный раствор Коэффициент теплопроводности по СНиП
1. Кирпич 0,35 – 0,87
2. Саманные блоки 0,1 – 0,44
3. Бетон 1,51 – 1,86
4. Пенобетон и газобетон на основе цемента 0,11 – 0,43
5. Пенобетон и газобетон на основе извести 0,13 – 0,55
6. Ячеистый бетон 0,08 – 0,26
7. Керамические блоки 0,14 – 0,18
8. Строительный раствор цементно-песчаный 0,58 – 0,93
9. Строительный раствор с добавлением извести 0,47 – 0,81

Важно . Из приведённых в таблице данных видно, что у каждого строительного материала довольно большой разброс в показателях коэффициента теплопроводности.

Это связано с несколькими причинами:

  • Плотность. Все утеплители выпускаются или укладываются (пеноизол, эковата) различной плотности. Чем ниже плотность (больше присутствует воздуха в теплоизоляционной структуре), тем ниже проводимость тепла. И, наоборот, у очень плотных утеплителей этот коэффициент выше.
  • Вещество, из которого производят (основа). Например, кирпич бывает силикатным, керамическим, глиняным. От этого зависит и коэффициент теплопроводности.
  • Количество пустот. Это касается кирпича (пустотелый и полнотелый) и теплоизоляции. Воздух – самый худший проводник тепла. Коэффициент его теплопроводимости – 0,026. Чем больше пустот, тем ниже этот показатель.

Строительный раствор хорошо проводит тепло, поэтому любые стены рекомендуется утеплять.

Если объяснять на пальцах

Для наглядности и понимания, что такое теплопроводность, можно сравнить кирпичную стену, толщиной 2 м 10 см с другими материалами. Таким образом, 2,1 метра кирпича, сложенного в стену на обычном цементно-песчаном растворе равны:

  • стене толщиной 0,9 м из керамзитобетона;
  • брусу, диаметром 0,53 м;
  • стене, толщиной 0,44 м из газобетона.

Если речь заходит от таких распространённых утеплителях, как минеральная вата и пенополистирол, то потребуется всего 0,18 м первой теплоизоляции или 0,12 м второй, чтобы значения теплопроводности огромной кирпичной стены оказались равными тонюсенькому слою теплоизоляции.

Сравнительная характеристика теплопроводности утеплительных, строительных и отделочных материалов, которую можно произвести, изучив СНиПы, позволяет проанализировать и правильно составить утеплительный пирог (основание, утеплитель, финишная отделка). Чем ниже теплопроводность, тем выше цена. Ярким примером могут послужить стены дома, сложенные из керамических блоков или обычного высококачественного кирпича. Первые имеют теплопроводность всего 0,14 – 0,18 и стоят намного дороже любого, самого лучшего кирпича.

Последние годы при строительстве дома или его ремонте большое внимание уделяется энергоэффективности. При уже существующих ценах на топливо это очень актуально. Причем похоже что дальше экономия будет приобретать все большую важность. Чтобы правильно подобрать состав и толщин материалов в пироге ограждающих конструкций (стены, пол, потолок, кровля) необходимо знать теплопроводность строительных материалов. Эта характеристика указывается на упаковках с материалами, а необходима она еще на стадии проектирования. Ведь надо решить из какого материала строить стены, чем их утеплять, какой толщины должен быть каждый слой.

Что такое теплопроводность и термическое сопротивление

При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность. Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.

Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).

Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше (а лучше — хоть немного больше) рекомендованной для вашего региона.

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Наименование материала Коэффициент теплопроводности Вт/(м·°C)
В сухом состоянии При нормальной влажности При повышенной влажности
Войлок шерстяной 0,036-0,041 0,038-0,044 0,044-0,050
Каменная минеральная вата 25-50 кг/м3 0,036 0,042 0,045
Каменная минеральная вата 40-60 кг/м3 0,035 0,041 0,044
Каменная минеральная вата 80-125 кг/м3 0,036 0,042 0,045
Каменная минеральная вата 140-175 кг/м3 0,037 0,043 0,0456
Каменная минеральная вата 180 кг/м3 0,038 0,045 0,048
Стекловата 15 кг/м3 0,046 0,049 0,055
Стекловата 17 кг/м3 0,044 0,047 0,053
Стекловата 20 кг/м3 0,04 0,043 0,048
Стекловата 30 кг/м3 0,04 0,042 0,046
Стекловата 35 кг/м3 0,039 0,041 0,046
Стекловата 45 кг/м3 0,039 0,041 0,045
Стекловата 60 кг/м3 0,038 0,040 0,045
Стекловата 75 кг/м3 0,04 0,042 0,047
Стекловата 85 кг/м3 0,044 0,046 0,050
Пенополистирол (пенопласт, ППС) 0,036-0,041 0,038-0,044 0,044-0,050
Экструдированный пенополистирол (ЭППС, XPS) 0,029 0,030 0,031
Пенобетон, газобетон на цементном растворе, 600 кг/м3 0,14 0,22 0,26
Пенобетон, газобетон на цементном растворе, 400 кг/м3 0,11 0,14 0,15
Пенобетон, газобетон на известковом растворе, 600 кг/м3 0,15 0,28 0,34
Пенобетон, газобетон на известковом растворе, 400 кг/м3 0,13 0,22 0,28
Пеностекло, крошка, 100 - 150 кг/м3 0,043-0,06
Пеностекло, крошка, 151 - 200 кг/м3 0,06-0,063
Пеностекло, крошка, 201 - 250 кг/м3 0,066-0,073
Пеностекло, крошка, 251 - 400 кг/м3 0,085-0,1
Пеноблок 100 - 120 кг/м3 0,043-0,045
Пеноблок 121- 170 кг/м3 0,05-0,062
Пеноблок 171 - 220 кг/м3 0,057-0,063
Пеноблок 221 - 270 кг/м3 0,073
Эковата 0,037-0,042
Пенополиуретан (ППУ) 40 кг/м3 0,029 0,031 0,05
Пенополиуретан (ППУ) 60 кг/м3 0,035 0,036 0,041
Пенополиуретан (ППУ) 80 кг/м3 0,041 0,042 0,04
Пенополиэтилен сшитый 0,031-0,038
Вакуум 0
Воздух +27°C. 1 атм 0,026
Ксенон 0,0057
Аргон 0,0177
Аэрогель (Aspen aerogels) 0,014-0,021
Шлаковата 0,05
Вермикулит 0,064-0,074
Вспененный каучук 0,033
Пробка листы 220 кг/м3 0,035
Пробка листы 260 кг/м3 0,05
Базальтовые маты, холсты 0,03-0,04
Пакля 0,05
Перлит, 200 кг/м3 0,05
Перлит вспученный, 100 кг/м3 0,06
Плиты льняные изоляционные, 250 кг/м3 0,054
Полистиролбетон, 150-500 кг/м3 0,052-0,145
Пробка гранулированная, 45 кг/м3 0,038
Пробка минеральная на битумной основе, 270-350 кг/м3 0,076-0,096
Пробковое покрытие для пола, 540 кг/м3 0,078
Пробка техническая, 50 кг/м3 0,037

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.

Таблица теплопроводности строительных материалов

Стены, перекрытия, пол, делать можно из разных материалов, но так повелось, что теплопроводность строительных материалов обычно сравнивают с кирпичной кладкой. Этот материал знаю все, с ним проще проводить ассоциации. Наиболее популярны диаграммы, на которых наглядно продемонстрирована разница между различными материалами. Одна такая картинка есть в предыдущем пункте, вторая — сравнение кирпичной стены и стены из бревен — приведена ниже. Именно потому для стен из кирпича и другого материала с высокой теплопроводностью выбирают теплоизоляционные материалы. Чтобы было проще подбирать, теплопроводность основных строительных материалов сведена в таблицу.

Название материала, плотность Коэффициент теплопроводности
в сухом состоянии при нормальной влажности при повышенной влажности
ЦПР (цементно-песчаный раствор) 0,58 0,76 0,93
Известково-песчаный раствор 0,47 0,7 0,81
Гипсовая штукатурка 0,25
Пенобетон, газобетон на цементе, 600 кг/м3 0,14 0,22 0,26
Пенобетон, газобетон на цементе, 800 кг/м3 0,21 0,33 0,37
Пенобетон, газобетон на цементе, 1000 кг/м3 0,29 0,38 0,43
Пенобетон, газобетон на извести, 600 кг/м3 0,15 0,28 0,34
Пенобетон, газобетон на извести, 800 кг/м3 0,23 0,39 0,45
Пенобетон, газобетон на извести, 1000 кг/м3 0,31 0,48 0,55
Оконное стекло 0,76
Арболит 0,07-0,17
Бетон с природным щебнем, 2400 кг/м3 1,51
Легкий бетон с природной пемзой, 500-1200 кг/м3 0,15-0,44
Бетон на гранулированных шлаках, 1200-1800 кг/м3 0,35-0,58
Бетон на котельном шлаке, 1400 кг/м3 0,56
Бетон на каменном щебне, 2200-2500 кг/м3 0,9-1,5
Бетон на топливном шлаке, 1000-1800 кг/м3 0,3-0,7
Керамическийй блок поризованный 0,2
Вермикулитобетон, 300-800 кг/м3 0,08-0,21
Керамзитобетон, 500 кг/м3 0,14
Керамзитобетон, 600 кг/м3 0,16
Керамзитобетон, 800 кг/м3 0,21
Керамзитобетон, 1000 кг/м3 0,27
Керамзитобетон, 1200 кг/м3 0,36
Керамзитобетон, 1400 кг/м3 0,47
Керамзитобетон, 1600 кг/м3 0,58
Керамзитобетон, 1800 кг/м3 0,66
ладка из керамического полнотелого кирпича на ЦПР 0,56 0,7 0,81
Кладка из пустотелого керамического кирпича на ЦПР, 1000 кг/м3) 0,35 0,47 0,52
Кладка из пустотелого керамического кирпича на ЦПР, 1300 кг/м3) 0,41 0,52 0,58
Кладка из пустотелого керамического кирпича на ЦПР, 1400 кг/м3) 0,47 0,58 0,64
Кладка из полнотелого силикатного кирпича на ЦПР, 1000 кг/м3) 0,7 0,76 0,87
Кладка из пустотелого силикатного кирпича на ЦПР, 11 пустот 0,64 0,7 0,81
Кладка из пустотелого силикатного кирпича на ЦПР, 14 пустот 0,52 0,64 0,76
Известняк 1400 кг/м3 0,49 0,56 0,58
Известняк 1+600 кг/м3 0,58 0,73 0,81
Известняк 1800 кг/м3 0,7 0,93 1,05
Известняк 2000 кг/м3 0,93 1,16 1,28
Песок строительный, 1600 кг/м3 0,35
Гранит 3,49
Мрамор 2,91
Керамзит, гравий, 250 кг/м3 0,1 0,11 0,12
Керамзит, гравий, 300 кг/м3 0,108 0,12 0,13
Керамзит, гравий, 350 кг/м3 0,115-0,12 0,125 0,14
Керамзит, гравий, 400 кг/м3 0,12 0,13 0,145
Керамзит, гравий, 450 кг/м3 0,13 0,14 0,155
Керамзит, гравий, 500 кг/м3 0,14 0,15 0,165
Керамзит, гравий, 600 кг/м3 0,14 0,17 0,19
Керамзит, гравий, 800 кг/м3 0,18
Гипсовые плиты, 1100 кг/м3 0,35 0,50 0,56
Гипсовые плиты, 1350 кг/м3 0,23 0,35 0,41
Глина, 1600-2900 кг/м3 0,7-0,9
Глина огнеупорная, 1800 кг/м3 1,4
Керамзит, 200-800 кг/м3 0,1-0,18
Керамзитобетон на кварцевом песке с поризацией, 800-1200 кг/м3 0,23-0,41
Керамзитобетон, 500-1800 кг/м3 0,16-0,66
Керамзитобетон на перлитовом песке, 800-1000 кг/м3 0,22-0,28
Кирпич клинкерный, 1800 - 2000 кг/м3 0,8-0,16
Кирпич облицовочный керамический, 1800 кг/м3 0,93
Бутовая кладка средней плотности, 2000 кг/м3 1,35
Листы гипсокартона, 800 кг/м3 0,15 0,19 0,21
Листы гипсокартона, 1050 кг/м3 0,15 0,34 0,36
Фанера клеенная 0,12 0,15 0,18
ДВП, ДСП, 200 кг/м3 0,06 0,07 0,08
ДВП, ДСП, 400 кг/м3 0,08 0,11 0,13
ДВП, ДСП, 600 кг/м3 0,11 0,13 0,16
ДВП, ДСП, 800 кг/м3 0,13 0,19 0,23
ДВП, ДСП, 1000 кг/м3 0,15 0,23 0,29
Линолеум ПВХ на теплоизолирующей основе, 1600 кг/м3 0,33
Линолеум ПВХ на теплоизолирующей основе, 1800 кг/м3 0,38
Линолеум ПВХ на тканевой основе, 1400 кг/м3 0,2 0,29 0,29
Линолеум ПВХ на тканевой основе, 1600 кг/м3 0,29 0,35 0,35
Линолеум ПВХ на тканевой основе, 1800 кг/м3 0,35
Листы асбоцементные плоские, 1600-1800 кг/м3 0,23-0,35
Ковровое покрытие, 630 кг/м3 0,2
Поликарбонат (листы), 1200 кг/м3 0,16
Полистиролбетон, 200-500 кг/м3 0,075-0,085
Ракушечник, 1000-1800 кг/м3 0,27-0,63
Стеклопластик, 1800 кг/м3 0,23
Черепица бетонная, 2100 кг/м3 1,1
Черепица керамическая, 1900 кг/м3 0,85
Черепица ПВХ, 2000 кг/м3 0,85
Известковая штукатурка, 1600 кг/м3 0,7
Штукатурка цементно-песчаная, 1800 кг/м3 1,2

Древесина — один из строительных материалов с относительно невысокой теплопроводностью. В таблице даны ориентировочные данные по разным породам. При покупке обязательно смотрите плотность и коэффициент теплопроводности. Далеко не у всех они такие, как прописаны в нормативных документах.

Наименование Коэффициент теплопроводности
В сухом состоянии При нормальной влажности При повышенной влажности
Сосна, ель поперек волокон 0,09 0,14 0,18
Сосна, ель вдоль волокон 0,18 0,29 0,35
Дуб вдоль волокон 0,23 0,35 0,41
Дуб поперек волокон 0,10 0,18 0,23
Пробковое дерево 0,035
Береза 0,15
Кедр 0,095
Каучук натуральный 0,18
Клен 0,19
Липа (15% влажности) 0,15
Лиственница 0,13
Опилки 0,07-0,093
Пакля 0,05
Паркет дубовый 0,42
Паркет штучный 0,23
Паркет щитовой 0,17
Пихта 0,1-0,26
Тополь 0,17

Металлы очень хорошо проводят тепло. Именно они часто являются мостиком холода в конструкции. И это тоже надо учитывать, исключать прямой контакт используя теплоизолирующие прослойки и прокладки, которые называются термическим разрывом. Теплопроводность металлов сведена в другую таблицу.

Название Коэффициент теплопроводности Название Коэффициент теплопроводности
Бронза 22-105 Алюминий 202-236
Медь 282-390 Латунь 97-111
Серебро 429 Железо 92
Олово 67 Сталь 47
Золото 318

Как рассчитать толщину стен

Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.

Термическое сопротивление ограждающих
конструкций для регионов России

Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.

Расчет толщины стены, толщины утеплителя, отделочных слоев

Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:

R — термическое сопротивление;

p — толщина слоя в метрах;

k — коэффициент теплопроводности.

Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т.д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.

Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.

Пример расчета толщины утеплителя

Разберем на примере. Собираемся строить стену из кирпича — в полтора кирпича, утеплять будем минеральной ватой. По таблице тепловое сопротивление стен для региона должно быть не меньше 3,5. Расчет для этой ситуации приведен ниже.


Если бюджет ограничен, минеральной ваты можно взять 10 см, а недостающее покроется отделочными материалами. Они ведь будут изнутри и снаружи. Но, если хотите, чтобы счета за отопление были минимальными, лучше отделку пускать «плюсом» к расчетной величине. Это ваш запас на время самых низких температур, так как нормы теплового сопротивления для ограждающих конструкций считаются по средней температуре за несколько лет, а зимы бывают аномально холодными. Потому теплопроводность строительных материалов, используемых для отделки просто не принимают во внимание.

Строительство коттеджа или дачного дома - это сложный и трудоемкий процесс. И для того, чтобы будущее строение простояло не один десяток лет, нужно соблюдать все нормы и стандарты при его возведении. Поэтому каждый этап строительства требует точных расчетов и качественного выполнения необходимых работ.

Одним из самых важных показателей при строительстве и отделке строения является теплопроводность строительных материалов. СНИП (строительные нормы и правила) дает полный спектр информации по данному вопросу. Ее необходимо знать, чтобы будущее здание было комфортным для проживания как в летний, так и в зимний период.

Идеальный теплый дом

От конструктивных особенностей строения и применяемых при его возведении материалов зависит комфорт и экономичность проживания в нем. Комфорт заключается в создании оптимального микроклимата внутри вне зависимости от внешних погодных условий и температуры окружающей среды. Если материалы подобраны правильно, а котельное оборудование и вентиляция установлены согласно нормам, то в таком доме будет комфортная прохладная температура летом и тепло зимой. К тому же если все материалы, используемые при строительстве, обладают хорошими теплоизоляционными свойствами, то расходы на энергоносители при отоплении помещений будут минимальны.

Понятие теплопроводности

Теплопроводность - это передача тепловой энергии между непосредственно соприкасающимися телами или средами. Простыми словами теплопроводность - это способность материала проводить температуру. То есть, попадая в какую-то среду с отличающейся температурой, материал начинает принимать температуру этой среды.

Этот процесс имеет большое значение и в строительстве. Так, в доме с помощью отопительного оборудования поддерживается оптимальная температура (20-25°C). Если температура на улице будет ниже, то когда отключается отопление, все тепло из дома через некоторое время выйдет на улицу, и температура понизится. Летом происходит обратная ситуация. Чтобы сделать температуру в доме ниже уличной, приходится использовать кондиционер.

Коэффициент теплопроводности

Потеря тепла в доме неизбежна. Она происходит постоянно, когда температура снаружи меньше, чем в помещении. А вот ее интенсивность - это переменная величина. Она зависит от множества факторов, главными среди которых являются:

  • Площадь поверхностей, участвующих в теплообмене (крыша, стены, перекрытия, пол).
  • Показатель теплопроводности строительных материалов и отдельных элементов здания (окна, двери).
  • Разница между температурами на улице и внутри дома.
  • И другие.

Для количественной характеристики теплопроводности строительных материалов используют специальный коэффициент. Используя этот показатель, можно довольно просто рассчитать необходимую теплоизоляцию для всех частей дома (стены, крыша, перекрытия, пол). Чем выше коэффициент теплопроводности строительных материалов, тем больше интенсивность потери тепла. Таким образом, для постройки теплого дома лучше применять материалы с более низким показателем этой величины.

Коэффициент теплопроводности строительных материалов, как и любых других веществ (жидких, твердых или газообразных), обозначается греческой буквой λ. Единицей его измерения является Вт/(м*°C). При этом расчет ведется на один квадратный метр стены толщиной в один метр. Разница температур здесь берется 1°. Практически в любом строительном справочнике имеется таблица теплопроводности строительных материалов, в которой можно посмотреть значение этого коэффициента для различных блоков, кирпичей, бетонных смесей, пород дерева и других материалов.

Определение потерь тепла

Потери тепла в любом здании всегда есть, но в зависимости от материала они могут изменять свое значение. В среднем потеря тепла происходит через:

  • Крышу (от 15 % до 25 %).
  • Стены (от 15 % до 35 %).
  • Окна (от 5 % до 15 %).
  • Дверь (от 5 % до 20 %).
  • Пол (от 10 % до 20 %).

Для определения потерь тепла применяют специальный тепловизор, который определяет наиболее проблемные места. Они выделяются на нем красным цветом. Меньшая потеря тепла происходит в желтых зонах, далее - в зеленых. Зоны с наименьшей потерей тепла выделяются синим цветом. А определение теплопроводности строительных материалов должно проводиться в специальных лабораториях, о чем должен свидетельствовать сертификат качества, прилагаемый к продукции.

Пример расчета потерь тепла

Если взять, к примеру, стену из материала с коэффициентом теплопроводности 1, то при разности температур с двух сторон этой стены в 1°, потери тепла составят 1 Вт. Если же толщину стены взять не 1 метр, а 10 см, то потери составят уже 10 Вт. В случае, если разность температур будет 10°, то тепловые потери также составят 10 Вт.

Рассмотрим теперь на конкретном примере расчет потери тепла целого здания. Высоту его возьмем 6 метров (8 с коньком), ширину - 10 метров, а длину - 15 метров. Для простоты расчетов берем 10 окон площадью 1 м 2 . Температуру внутри помещения будем считать равную 25°C, а на улице -15°C. Вычисляем площадь всех поверхностей, через которые происходит потеря тепла:

  • Окна - 10 м 2 .
  • Пол - 150 м 2 .
  • Стены - 300 м 2 .
  • Крыша (со скатами по длинной стороне) - 160 м 2 .

Формула теплопроводности строительных материалов позволяет вычислить коэффициенты для всех частей здания. Но проще использовать уже готовые данные из справочника. Там есть таблица теплопроводности строительных материалов. Рассмотрим каждый элемент по отдельности и определим его тепловое сопротивление. Оно рассчитывается по формуле R = d/λ, где d - толщина материала, а λ - коэффициент его теплопроводности.

Пол - 10 см бетона (R=0,058 (м 2 *°C)/Вт) и 10 см минеральной ваты (R=2,8 (м 2 *°C)/Вт). Теперь складываем эти два показателя. Таким образом, тепловое сопротивление пола равняется 2,858 (м 2 *°C)/Вт.

Аналогично считаются стены, окна и кровля. Материал - ячеистый бетон (газобетон), толщина 30 см. В таком случае R=3,75 (м 2 *°C)/Вт. Тепловое сопротивление пластового окна - 0,4 (м 2 *°C)/Вт.

Следующая формула позволяет выяснить потери тепловой энергии.

Q = S * T / R, где S - площадь поверхности, T - разница температур снаружи и внутри (40°C). Рассчитаем потери тепла для каждого элемента:

  • Для крыши: Q = 160*40/2,8=2,3 кВт.
  • Для стен: Q = 300*40/3,75=3,2 кВт.
  • Для окон: Q = 10*40/0,4=1 кВт.
  • Для пола: Q = 150*40/2,858=2,1 кВт.

Далее все эти показатели суммируются. Таким образом, для данного коттеджа тепловые потери составят 8,6 кВт. А для поддержания оптимальной температуры потребуется котельное оборудование мощностью не менее 10 кВт.

Материалы для внешних стен

На сегодняшний день существует множество стеновых строительных материалов. Но наибольшей популярностью в частном домостроении по-прежнему пользуются строительные блоки, кирпичи и дерево. Основные отличия - это плотность и теплопроводность строительных материалов. Сравнение дает возможность выбрать золотую середину в соотношении плотность/теплопроводность. Чем выше плотность материала, тем выше его несущая способность, а следовательно, и прочность конструкции в целом. Но при этом ниже его тепловое сопротивление, а как следствие, расходы на энергоносители выше. С другой стороны, чем выше тепловое сопротивление, тем ниже плотность материала. Меньшая плотность, как правило, подразумевает наличие пористой структуры.

Чтобы взвесить все за и против, необходимо знать плотность материала и его коэффициент теплопроводности. Следующая таблица теплопроводности строительных материалов для стен дает значение этого коэффициента и его плотность.

Материал

Теплопроводность, Вт/(м*°C)

Плотность, т/м 3

Железобетон

Керамзитобетонные блоки

Керамический кирпич

Силикатный кирпич

Газобетонные блоки

Утеплители для стен

При недостаточной тепловой сопротивляемости внешних стен могут применяться различные утеплители. Так как значения теплопроводности строительных материалов для утепления могут иметь весьма низкий показатель, то чаще всего толщины в 5-10 см будет достаточно для создания комфортной температуры и микроклимата в помещениях. Широкое применение на сегодняшний день получили такие материалы, как минеральная вата, пенополистирол, пенопласт, пенополиуритан и пеностекло.

Следующая таблица теплопроводности строительных материалов, используемых для утепления наружных стен, дает значение коэффициента λ.

Особенности применения стеновых утеплителей

Применение утеплителей для наружных стен имеет некоторые ограничения. Это прежде всего связанно с таким параметром, как паропроницаемость. Если стена сделана из пористого материала, такого как газобетон, пенобетон или керамзитобетон, то применять лучше минеральную вату, так как этот параметр у них практически одинаковый. Использование пенополистирола, пенополиуритана или пеностекла возможно только при наличии специального вентиляционного зазора между стеной и утеплителем. Для дерева это также критично. А вот для кирпичных стен данный параметр не так критичен.

Теплая кровля

Утепление кровли позволяет избежать ненужных перерасходов при отоплении дома. Для этого могут применяться все виды утеплителей как листового формата, так и напыляемые (пенополиуритан). При этом не следует забывать про пароизоляцию и гидроизоляцию. Это весьма важно, так как мокрый утеплитель (минеральная вата) теряет свои свойства по тепловой сопротивляемости. Если же кровля не утепляется, то необходимо основательно утеплить перекрытие между чердаком и последним этажом.

Пол

Утепление пола весьма важный этап. При этом также необходимо применять пароизоляцию и гидроизоляцию. В качестве утеплителя используется более плотный материал. Он, соответственно, имеет более высокий коэффициент теплопроводности, чем кровельный. Дополнительной мерой для утепления пола может послужить подвал. Наличие воздушной прослойки позволяет повысить тепловую защиту дома. А оборудование системы теплого пола (водяного или электрического) дает дополнительный источник тепла.

Заключение

При строительстве и отделке фасада необходимо руководствоваться точными расчетами по тепловым потерям и учитывать параметры используемых материалов (теплопроводность, паропроницаемость и плотность).

Какой толщины должен быть утеплитель, сравнение теплопроводности материалов.

  • 16 января, 2006
  • Опубликовано: Строительные технологии и материалы

Необходимость использования Систем теплоизоляции WDVS вызвана высокой экономической эффективностью.

Вслед за странами Европы, в Российской Федерации приняли новые нормы теплосопротивления ограждающих и несущих конструкций, направленные на снижение эксплуатационных расходов и энергосбережение. С выходом СНиП II-3-79*, СНиП 23-02-2003 "Тепловая защита зданий" прежние нормы теплосопротивления устарели. Новыми нормами предусмотрено резкое возрастание требуемого сопротивления теплопередаче ограждающих конструкций. Теперь прежде использовавшиеся подходы в строительстве не соответствуют новым нормативным документам, необходимо менять принципы проектирования и строительства, внедрять современные технологии.

Как показали расчёты, однослойные конструкции экономически не отвечают принятым новым нормам строительной теплотехники. К примеру, в случае использования высокой несущей способности железобетона или кирпичной кладки, для того, чтобы этим же материалом выдержать нормы теплосопротивления, толщину стен необходимо увеличить соответственно до 6 и 2,3 метров, что противоречит здравому смыслу. Если же использовать материалы с лучшими показателями по теплосопротивлению, то их несущая способность сильно ограничена, к примеру, как у газобетона и керамзитобетона, а пенополистирол и минвата, эффективные утеплители, вообще не являются конструкционными материалами. На данный момент нет абсолютного строительного материала, у которого бы была высокая несущая способность в сочетании с высоким коэффициентом теплосопротивления.

Чтобы отвечать всем нормам строительства и энергосбережения необходимо здание строить по принципу многослойных конструкций, где одна часть будет выполнять несущую функцию, вторая - тепловую защиту здания. В таком случае толщина стен остаётся разумной, соблюдается нормированное теплосопротивление стен. Системы WDVS по своим теплотехническим показателям являются самыми оптимальными из всех представленных на рынке фасадных систем.

Таблица необходимой толщины утеплителя для выполнения требований действующих норм по теплосопротивлению в некоторых городах РФ:


Таблица, где: 1 - географическая точка 2 - средняя температура отопительного периода 3 - продолжительность отопительного периода в сутках 4 - градусо-сутки отопительного периода Dd, °С * сут 5 - нормируемое значение сопротивления теплопередаче Rreq, м2*°С/Вт стен 6 - требуемая толщина утеплителя

Условия выполнения расчётов для таблицы:

1. Расчёт основывается на требованиях СНиП 23-02-2003
2. За пример расчёта взята группа зданий 1 - Жилые, лечебно-профилактические и детские учреждения, школы, интернаты, гостиницы и общежития.
3. За несущую стену в таблице принимается кирпичная кладка толщиной 510 мм из глиняного обыкновенного кирпича на цементно-песчаном растворе l = 0,76 Вт/(м * °С)
4. Коэффициент теплопроводности берётся для зон А.
5. Расчётная температура внутреннего воздуха помещения + 21 °С "жилая комната в холодный период года" (ГОСТ 30494-96)
6. Rreq рассчитано по формуле Rreq=aDd+b для данного географического места
7. Расчёт: Формула расчёта общего сопротивления теплопередаче многослойных ограждений:
R0= Rв + Rв.п + Rн.к + Rо.к + Rн Rв - сопротивление теплообмену у внутренней поверхности конструкции
Rн - сопротивление теплообмену у наружной поверхности конструкции
Rв.п - сопротивление теплопроводности воздушной прослойки (20 мм)
Rн.к - сопротивление теплопроводности несущей конструкции
Rо.к - сопротивление теплопроводности ограждающей конструкции
R = d/l d - толщина однородного материала в м,
l - коэффициент теплопроводности материала, Вт/(м * °С)
R0 = 0,115 + 0,02/7,3 + 0,51/0,76 + dу/l + 0,043 = 0,832 + dу/l
dу - толщина теплоизоляции
R0 = Rreq
Формула расчёта толщины утеплителя для данных условий:
dу = l * (Rreq - 0,832)

а) - за среднюю толщину воздушной прослойки между стеной и теплоизоляцией принято 20 мм
б) - коэффициент теплопроводности пенополистирола ПСБ-С-25Ф l = 0,039 Вт/(м * °С) (на основании протокола испытаний)
в) - коэффициент теплопроводности фасадной минваты l = 0,041 Вт/(м * °С) (на основании протокола испытаний)

* в таблице даны усреднённые показатели необходимой толщины этих двух типов утеплителя.

Примерный расчёт толщины стен из однородного материала для выполнения требований СНиП 23-02-2003 "Тепловая защита зданий".

* для сравнительного анализа используются данные климатической зоны г. Москвы и Московской области.

Условия выполнения расчётов для таблицы:

1. Нормируемое значение сопротивления теплопередаче Rreq = 3,14
2. Толщина однородного материала d= Rreq * l

Таким образом, из таблицы видно, что для того, чтобы построить здание из однородного материала, отвечающее современным требованиям теплосопротивления, к примеру, из традиционной кирпичной кладки, даже из дырчатого кирпича, толщина стен должна быть не менее 1,53 метра.

Чтобы наглядно показать, какой толщины необходим материал для выполнения требований по теплосопротивлению стен из однородного материала, выполнен расчёт, учитывающий конструктивные особенности применения материалов, получились следующие результаты:

В данной таблице указаны расчётные данные по теплопроводности материалов.

По данным таблицы для наглядности получается следующая диаграмма:

Страница в разработке

  • Утеплённая Шведская Плита

    Утеплённая Шведская плита (УШП) - один из видов мелкозаглублённого фундамента. Технология пришла с Европы.Данный тип фундамента имеет два основных слоя. Нижний, теплоизоляционный слой, препятствует промерзанию грунта под домом. Верхний слой

  • Фильм - пошаговая инструкция по технологии СФТК ("мокрый фасад")

    При поддержке компании СИБУР, Ассоциации Производителей и Продавцов Пенополистирола, а также при сотрудничестве с компаниями "КРАЙЗЕЛЬ РУС", "ТЕРМОКЛИП" и "АРМАТ-ТД" создан уникальный обучающий фильм по технологии производства штукатурных теплоизоляционных фасадных…

    В феврале 2015 года выпущен очередной обучающий видеофильм по фасадным системам. Как правильно изготавливать декор-элементы для украшения коттеджа - об этом пошагово в видеофильме.

    • При поддержке СИБУРа состоялась I практическая конференция «Полимеры в теплоизоляции»

      27 мая в Москве состоялась I практическая конференция «Полимеры в теплоизоляции», организованная информационно-аналитическим центром Rupec и журналом «Нефтегазовая вертикаль» при поддержке СИБУРа. Главными темами конференции стали тенденции в области нормативной…

    • Справочник - вес, диаметр, ширина чёрного металлопроката (арматура, уголок, швеллер, двутавр, трубы)

      1. Справочник: диаметр, вес погонного метра арматуры, сечение, класс стали

    • Системы «БОЛАРС ТВД-1» и «БОЛАРС ТВД-2» абсолютно пожаробезопасны!

      Системы «БОЛАРС ТВД-1» и «БОЛАРС ТВД-2» абсолютно пожаробезопасны!К такому выводу пришли специалисты, проведя огневые испытания на фасадных теплоизоляционных системах ТМ «БОЛАРС». Системам присвоен класс пожарной опасности К0 – самые безопасные. Огромную…

    Prev Next

    Чтобы правильно организовать , и помещений нужно знать определённые особенности и свойства материалов. От качественного подбора необходимых значений напрямую зависит тепловая устойчивость вашего дома, ведь ошибившись, в первоначальных расчётах вы рискуете сделать здания неполноценным. В помощь вам предоставляется подробная таблица теплопроводности строительных материалов, описанная в этой статье.

    Читайте в статье

    Что такое теплопроводность и её значимость?

    Теплопроводность – это количественное свойство веществ пропускать тепло, которое определяется коэффициентом. Этот показатель равен суммарному количеству тепла, которое проходит сквозь однородный материал, имеющий единицу длины, площади и времени при одинарной разнице в температурах. Система СИ преобразует эту величину в коэффициент теплопроводности, это в буквенном обозначении выглядит так – Вт/(м*К). Тепловая энергия распространяется по материалу посредством быстро движущихся нагретых частиц, которые при столкновении с медленными и холодными частицами передают им долю тепла. Чем лучше нагретые частицы будут защищены от холодных, тем лучше будет сохраняться накопленное тепло в материале.


    Подробная таблица теплопроводности строительных материалов

    Главной особенностью теплоизолирующих материалов и строительных деталей является внутренняя структура и коэффициент сжатия молекулярной основы сырья, из которого состоят материалы. Значения коэффициентов теплопроводности строительными материалами таблично описаны ниже.

    Вид материала Коэффициенты теплопроводности, Вт/(мм*°С)
    Сухие Средние условия тепловой отдачи Условия повышенной влажности
    Полистирол 36 — 41 38 — 44 44 — 50
    Эструдированный полистирол 29 30 31
    Войлок 45
    Раствор цемент+песок 580 760 930
    Раствор известь+песок 470 700 810
    из гипса 250
    Каменная вата 180 кг/м 3 38 45 48
    140-175 кг/м 3 37 43 46
    80-125 кг/м 3 36 42 45
    40-60 кг/м 3 35 41 44
    25-50 кг/м 3 36 42 45
    Стекловата 85 кг/м 3 44 46 50
    75 кг/м 3 40 42 47
    60 кг/м 3 38 40 45
    45 кг/м 3 39 41 45
    35 кг/м 3 39 41 46
    30 кг/м 3 40 42 46
    20 кг/м 3 40 43 48
    17 кг/м 3 44 47 53
    15 кг/м 3 46 49 55
    Пеноблок и газоблок на основе 1000 кг/м 3 290 380 430
    800 кг/м 3 210 330 370
    600 кг/м 3 140 220 260
    400 кг/м 3 110 140 150
    и на извести 1000 кг/м 3 310 480 550
    800 кг/м 3 230 390 450
    400 кг/м 3 130 220 280
    Дерево сосны и ели в распиле поперек волокон 9 140 180
    сосны и ели в распиле вдоль волокон 180 290 350
    Древесина дуба поперек волокон 100 180 230
    Древесина дуб вдоль волокон 230 350 410
    Медь 38200 — 39000
    Алюминий 20200 — 23600
    Латунь 9700 — 11100
    Железо 9200
    Олово 6700
    Сталь 4700
    Стекло 3 мм 760
    Снежный слой 100 — 150
    Вода обычная 560
    Воздух средней температуры 26
    Вакуум 0
    Аргон 17
    Ксенон 0,57
    Арболит 7 — 170
    35
    Железобетон плотность 2,5 тыс. кг/м 3 169 192 204
    Бетон на щебне с плотностью 2,4 тыс. кг/м 3 151 174 186
    с плотностью 1,8 тыс. кг/м 3 660 800 920
    Бетон на керамзите с плотностью 1,6 тыс. кг/м 3 580 670 790
    Бетон на керамзите с плотностью 1,4 тыс. кг/м 3 470 560 650
    Бетон на керамзите с плотностью 1,2 тыс. кг/м 3 360 440 520
    Бетон на керамзите с плотностью 1 тыс. кг/м 3 270 330 410
    Бетон на керамзите с плотностью 800 кг/м 3 210 240 310
    Бетон на керамзите с плотностью 600 кг/м 3 160 200 260
    Бетон на керамзите с плотностью 500 кг/м 3 140 170 230
    Крупноформатный блок из керамики 140 — 180
    из керамики плотный 560 700 810
    Силикатный кирпич 700 760 870
    Кирпич из керамики полый 1500 кг/м³ 470 580 640
    Кирпич из керамики полый 1300 кг/м³ 410 520 580
    Кирпич из керамики полый 1000 кг/м³ 350 470 520
    Силикат на 11 отверстий (плотность 1500 кг/м 3) 640 700 810
    Силикат на 14 отверстий (плотность 1400 кг/м 3) 520 640 760
    Гранитный камень 349 349 349
    Мраморный камень 2910 2910 2910
    Известняковый камень, 2000 кг/м 3 930 1160 1280
    Известняковый камень, 1800 кг/м 3 700 930 1050
    Известняковый камень, 1600 кг/м 3 580 730 810
    Известняковый камень, 1400 кг/м 3 490 560 580
    Тюф 2000 кг/м 3 760 930 1050
    Тюф 1800 кг/м 3 560 700 810
    Тюф 1600 кг/м 3 410 520 640
    Тюф 1400 кг/м 3 330 430 520
    Тюф 1200 кг/м 3 270 350 410
    Тюф 1000 кг/м 3 210 240 290
    Сухой песок 1600 кг/м 3 350
    Фанера прессованная 120 150 180
    Отпрессованная 1000 кг/м 3 150 230 290
    Отпрессованная доска 800 кг/м 3 130 190 230
    Отпрессованная доска 600 кг/м 3 110 130 160
    Отпрессованная доска 400 кг/м 3 80 110 130
    Отпрессованная доска 200 кг/м 3 6 7 8
    Пакля 5 6 7
    (обшивочный), 1050 кг/м 3 150 340 360
    (обшивочный), 800 кг/м 3 150 190 210
    380 380 380
    на утеплителе 1600 кг/м 3 330 330 330
    Линолеум на утеплителе 1800 кг/м 3 350 350 350
    Линолеум на утеплителе 1600 кг/м 3 290 290 290
    Линолеум на утеплителе 1400 кг/м 3 200 230 230
    Вата на эко основе 37 — 42
    Перлит пескообразный с плотностью 75 кг/м 3 43 — 47
    Перлит пескообразный с плотностью 100 кг/м 3 52
    Перлит пескообразный с плотностью 150 кг/м 3 52 — 58
    Перлит пескообразный с плотностью 200 кг/м 3 70
    Вспененное стекло плотность которого 100 — 150 кг/м 3 43 — 60
    Вспененное стекло плотность которого 51 — 200 кг/м 3 60 — 63
    Вспененное стекло плотность которого 201 — 250 кг/м 3 66 — 73
    Вспененное стекло плотность которого 251 — 400 кг/м 3 85 — 100
    Вспененное стекло в блоках плотность которого 100 — 120 кг/м 3 43 — 45
    Вспененное стекло плотность которого 121 — 170 кг/м 3 50 — 62
    Вспененное стекло плотность которого 171 — 220 кг/м 3 57 — 63
    Вспененное стекло плотность которого 221 — 270 кг/м 3 73
    Керамзитная и гравийная насыпь плотность которого 250 кг/м 3 99 — 100 110 120
    Керамзитная и гравийная насыпь плотность которого 300 кг/м 3 108 120 130
    Керамзитная и гравийная насыпь плотность которого 350 кг/м 3 115 — 120 125 140
    Керамзитная и гравийная насыпь плотность которого 400 кг/м 3 120 130 145
    Керамзитная и гравийная насыпь плотность которого 450 кг/м 3 130 140 155
    Керамзитная и гравийная насыпь плотность которого 500 кг/м 3 140 150 165
    Керамзитная и гравийная насыпь плотность которого 600 кг/м 3 140 170 190
    Керамзитная и гравийная насыпь плотность которого 800 кг/м 3 180 180 190
    Гипсовые плиты плотность которого 1350 кг/м 3 350 500 560
    плиты плотность которого 1100 кг/м 3 230 350 410
    Перлитовый бетон плотность которого 1200 кг/м 3 290 440 500
    МТПерлитовый бетон плотность которого 1000 кг/м 3 220 330 380
    Перлитовый бетон плотность которого 800 кг/м 3 160 270 330
    Перлитовый бетон плотность которого 600 кг/м 3 120 190 230
    Вспененный полиуретан плотность которого 80 кг/м 3 41 42 50
    Вспененный полиуретан плотность которого 60 кг/м 3 35 36 41
    Вспененный полиуретан плотность которого 40 кг/м 3 29 31 40
    Сшитый вспененный полиуретан 31 — 38

    Важно! Для достижения более эффективного утепления нужно компоновать разные материалы. Совместимость поверхностей между собой указана в инструкции от производителя.

    Разъяснения показателей в таблице теплопроводности материалов и утеплителя: их классификация

    В зависимости от конструктивных особенностей конструкции, которую необходимо утеплить, подбирается вид утеплителя. Так, например, если стена возведена из в два ряда, то для полноценной изоляции подойдёт пенопласт в 5 см толщиной.

    Благодаря широкому ассортименту плотности пенопластовых листов ими можно отлично произвести тепловую изоляцию стен из ОСБ и оштукатурить сверху, что также увеличит эффективность работы утеплителя.


    Вы можете ознакомиться с уровнем теплопроводности , таблично представленного на фото ниже.


    Классификация теплоизоляции

    По способу передачи тепла теплоизоляционные материалы разделяются на два вида:

    • Утеплитель который поглощает любое воздействие холода, жары, химического воздействия и т.д.;
    • Утеплитель, умеющий отражать все виды воздействия на него;

    По значению коэффициентов теплопроводности материала, из которого изготовлен утеплитель его различают по классам:

    • А класс. Такой утеплитель имеет наименьшую тепловую проводимость, максимальное значение которой 0,06 Вт (м*С);
    • Б класс. Обладает средним показателем СИ параметра и достигает 0,115 Вт (м*С);
    • В класс. Наделён высокой теплопроводностью и демонстрирует показатель в 0,175 Вт (м*С);

    Примечание! Не все утеплители имеют стойкость к высоким температурам. Например, эковата, соломит, ДСП, ДВП и торф нуждаются в надёжной защите от внешних условий.

    Основные виды коэффициентов теплопередачи материала. Таблица + примеры

    Расчёт необходимого , если это касается внешних стен дома исходит от регионального размещения здания. Чтобы объяснить наглядно как он происходит, в таблице ниже, приведённые цифры будут касаться Красноярского края.

    Вид материала Теплопередача, Вт/(м*°С) Толщина стен, мм Иллюстрация
    5500
    Лиственные породы деревьев с 15% 0,15 1230
    Бетон на основе керамзита 0,2 1630
    Пеноблок с плотностью 1 тыс. кг/м³ 0,3 2450
    Хвойные породы деревьев вдоль волокон 0,35 2860
    Дубовая вагонка 0,41 3350
    на растворе из цемента и песка 0,87 7110
    Железобетонные

    Каждое здание имеет разные сопротивления теплопередачи материалов. Таблица ниже, которая является выдержкой из СНиПа, ярко это демонстрирует.


    Примеры утепления зданий в зависимости от теплопроводности

    В современном строительстве нормой стали стены, состоящие из двух и даже трёх слоёв материала. Один слой состоит из , который подбирается после определённых расчётов. Дополнительно необходимо выяснить, где находится точка росы.

    Чтобы организовать необходимо комплексно использовать несколько СниПов, ГОСТов, пособий и СП:

    • СНиП 23-02-2003 (СП 50.13330.2012). «Тепловая защита зданий». Редакция от 2012 года;
    • СНиП 23-01-99 (СП 131.13330.2012). «Строительная климатология». Редакция от 2012 года;
    • СП 23-101-2004. «Проектирование тепловой защиты зданий»;
    • Пособие. Е.Г. Малявина «Теплопотери здания. Справочное пособие»;
    • ГОСТ 30494-96 (заменен на ГОСТ 30494-2011 с 2011 года). «Здания жилые и общественные. Параметры микроклимата в помещениях»;

    Производя вычисления по этим документам, определяют тепловые особенности строительного материала, ограждающего конструкцию, сопротивление тепловой передачи и степень совпадений с нормативными документами. Параметры расчёта исходя из таблицы теплопроводности строительного материала приведены на фото ниже.

    1. Не ленитесь потратить время на изучение технической литературы по свойствам теплопроводности материалов. Этот шаг сведёт к минимуму финансовые и тепловые потери.
    2. Не игнорируйте особенности климата в вашем регионе. Информацию о ГОСТах по этому поводу можно с лёгкостью отыскать в интернете.


      Особенность климата Плесень на стенах Затяжка пенопласта гидроизоляцией