Микроклимат больничных помещений. Лечебно-профилактических учреждений

ЛПУ Лекция 2 Раздел 2

2. Гигиенические требования к благоустройству помещений больницы


  1. Микроклимат и системы его обеспечивающие - вентиляция и
    отопление
2.1 Микроклимат в помещениях больницы и системы его обеспечивающие (вентиляция и отопление).

Внутренняя среда помещений действует на организм комплексом факторов: тепловой, воздушный, световой, цветовой, акустический и прочие. Действуя в совокупности, эти факторы определяют самочувствие и работоспособность человека в закрытом помещении.

Рассмотрим 3 приоритетных фактора в лекции: тепловой, воздушный и световой.

Тепловой фактор это совокупность четырех физических показателей: температура воздуха, влажность, скорость движения воздуха и температура внутренних поверхностей помещения (потолок, стены).

Воздушная среда помещений - это газовый и электрический состав воздуха, пыль (механические примеси), антропогенные химические вещества и микроорганизмы

Оптимизация микроклимата в больших помещениях способствует благоприятному течению и исходу болезни. Компенсаторные возможности больного ограничены, чувствительность к неблагоприятным факторам окружающей среды повышена.

Нормы микроклимата палат и других помещений больницы должны учитывать:


  1. - возраст больного;

  2. - особенности теплообмена больных с разными заболеваниями;

  3. - функциональное назначение помещений;

  4. - климатические особенности местности.
Температура в палате должна быть несколько выше, чем в жилых помещениях (табл.1).

Таблица 1


Температура воздуха в помещениях

больниц

1.

Палаты для взрослых

20°

2.

Палаты для больных гипотиреозом

24°

3.

Палаты для больных тиреотоксикозом

15°

4.

Палаты для ожоговых больных, послеродовые

22°

5.

Палаты для детей

22°

6.

Палаты для недоношенных, новорожденных и

25°

грудных детей

7.

Операционные, палаты интенсивной терапии

22°

8.

Залы лечебной физкультуры (ЛФК)

18°


Проведем анализ данных таблицы.

Температура в большинстве палат многопрофильных больниц- 20°. Для сравнения: в жилых помещениях квартиры - 18°.


  1. Возрастные особенности детей определяют самые высокие нормы
    температуры в палатах недоношенных, новорожденных и грудных детей -
    25°

  2. Особенности теплообмена больных с нарушениями функций
    щитовидной железы обусловливают высокую температуру в палатах- для
    больных с гипотиреозом (24°). Напротив, температура в палатах для больных
    тиреотоксикозом должна быть 15°. Повышенное теплообразование у таких
    больных - это специфика тиреотоксикоза: синдром «простыни», таким
    больным всегда жарко.
3. Температура в залах лечебной физкультуры - 18°. Для сравнения:
залы физ. Культуры в школе - 15 - 17°. Физическая деятельность
сопровождается повышенным теплообразованием.

4. Иное функциональное назначение помещений: в операционных, ПИТах
температура должна быть выше, чем в палатах - 22°.

Относительная влажность воздуха должна быть не выше 60%, скорость движения воздуха-не более 0,15м/сек.

^ Воздушная среда помещений: нормируется химический состав воздуха и бактериальное загрязнение.

Гигиеническая оценка чистоты воздуха больниц. Присутствие в закрытых помещениях людей и животных приводит к загрязнению воздуха продуктами метаболизма (антропотоксины и другие химические вещества). Человек в процессе жизнедеятельности выделяет более 400 различных соединений -аммиак, аммонийные соединения, сероводород, летучие жирные кислоты, индол, меркаптан, акролеин, ацетон, фенол, бутан, окись этилена и др. Выдыхаемый воздух содержит всего 15-16% кислорода и 3,4-4,7% углекислого газа, насыщен водяными парами и имеет температуру около 37°. В результате температура воздуха в помещениях повышается. Патогенные микроорганизмы (стафилококки, стрептококки, плесневые и дрожжевые грибы и пр.) поступают в воздух. Количество легких ионов уменьшается, тяжелые ионы накапливаются. Появляются неприятные запахи в палатах, приемных, лечебно-диагностических отделениях. Это обусловлено использованием различных лекарств (эфир, газообразные анестетические вещества, испарения различных лекарств и др.). Неприятные запахи могут быть связаны со строительными материалами (полимерные материалы для отделки помещений, мебели), а также со специфической пищей. Содержание недоокисленных веществ в воздухе повышается. Все это оказывает неблагоприятное влияние, как на больных, так и на персонал. Поэтому контроль за химическим составом воздуха и его бактериальной обсемененностью имеет важное гигиеническое значение (табл.2).
Таблица 2

Химический состав воздуха в помещении

Важным показателем воздушной среды является содержание в воздухе углекислого газа - СО 2 . В помещениях содержание СО 2 не должно превышать 0.1%. В атмосферном воздухе - 0,03-0,04%. Содержание 0,1% СО 2 не токсично для человека. Однако все показатели воздушно-тепловой среды ухудшаются при этой концентрации СО 2: повышается температура, относительная влажность, антропогенные примеси и микробная загрязненность. Это неблагоприятно влияет на самочувствие людей, ухудшает выздоровление, способствует появлению внутрибольничных инфекций.

^ Допустимые уровни бактериальной обсемененности воздуха помещений лечебных учреждений

Нормативы бактериальной обсемененности зависят от функционального назначения и класса чистоты помещений. Контролируют три вида санитарно­бактериологических показателей: до начала работы и во время работы.


  1. Общее число микроорганизмов в 1 м Воздуха (КОЕ м )

  2. Количество колоний Staphylococcus aureus в 1 м 3 воздуха

  3. Количество плесневых и дрожжевых грибов в 1 дм воздуха
I. Особо чистые помещения (класс А): операционные, родильные залы, асептические боксы, палаты для недоношенных детей. Общая обсемененность воздуха до работы не должна превышать 200 микробов в 1м воздуха, во время работы - также не более 200. Стафилококков и микрогрибов не должно быть.

П. Чистые помещения (класс Б): процедурные, перевязочные, предоперационные, палаты реанимации, детские палаты. Общее количество микробов не должно превышать 500 в 1 м до начала работы, во время работы - не более 750/м.

III. Условно чистые (класс В): палаты хирургических отделений,

коридоры, примыкающие к операционным, родильным залам, боксы и палаты инфекционных отделений и др. Общее количество микробов не должно превышать 750/м 3 до начала работы, во время работы - не более 1000. Стафилококк золотистый и микрогрибы должны отсутствовать во всех помещениях классов А, Б и В как до начала, так и во время работы. IV. Грязные (класс Г): коридоры и помещения административных

зданий, лестницы, туалеты и пр. Микробная обсемененность не нормируется.

Гигиенические требования к отоплению и вентиляции.

Системы отопления, вентиляции и кондиционирования обеспечивают воздушно-тепловой режим больничных помещений.

Отопление. В лечебных учреждениях холодный период года система отопления должна обеспечивать равномерное нагревание воздуха в течение всего отопительного периода, исключать загрязнения вредными выделениями и неприятными запахами воздуха помещений, не создавать шума. Система отопления должна быть удобна в эксплуатации и ремонте, увязана с системами вентиляции, легко регулируема. Нагревательные приборы следует размещать у наружных стен под окнами, что обеспечивает их более высокую эффективность. В этом случае они создают равномерный обогрев воздуха в помещении и препятствуют появлению токов холодного воздуха над полом возле окон. Не допускается размещение в палатах нагревательных приборов у внутренних стен. Оптимальной системой является центральное отопление. Только вода с предельной температурой 85° допускается. Нагревательные приборы только с гладкой поверхностью разрешают в помещениях больниц. Приборы должны быть устойчивы к ежедневному воздействию моющих и дезинфицирующих растворов, не адсорбировать пыль и микроорганизмы.

Отопительные приборы в детских больницах ограждаются. Лучистый обогрев с гигиенической позиции более благоприятен, чем конвективный. Его применяют для обогрева операционных, предоперационных, реанимационных, наркозных, родовых, психиатрических отделений, а также палат интенсивной терапии и послеоперационных палат.

В качестве теплоносителя в системах центрального отопления лечебных учреждений используется вода с предельной температурой в нагревательных приборах 85°С. Использование других жидкостей и растворов в качестве теплоносителя в системах отопления лечебных учреждений запрещается.

Вентиляция . Здания лечебных учреждений должны быть оборудованы тремя системами:


  • приточно-вытяжная вентиляция с механическим побуждением;

  • естественная вытяжная вентиляция без механического побуждения;

  • кондиционирование
Естественная вентиляция (аэрация) через форточки, фрамуги обязательна для всех лечебных помещений, кроме операционных.

Забор наружного воздуха для систем вентиляции и кондиционирования производят из чистой зоны атмосферного воздуха на высоте не менее 2 м от поверхности земли. Наружный воздух, подаваемый приточными установками, очищают фильтрами грубой и тонкой структуры.

Воздух, подаваемый в операционные, наркозные, родовые, реанимационные, послеоперационные палаты, палаты интенсивной терапии, а также в палаты для больных с ожогами, больных СПИДом, должен обрабатываться устройствами обеззараживания воздуха, обеспечивающими эффективность инактивации микроорганизмов и вирусов, находящихся в обрабатываемом воздухе, не менее 95%.

^ Кондиционирование воздуха ~ это комплекс мероприятий для создания и автоматического поддержания в помещения лечебных учреждений оптимального искусственного микроклимата и воздушной среды с заданными чистой, температурой, влажностью, ионным составом, подвижностью. Оно предусматривается в операционных, наркозных, родовых, послеоперационных палат, реанимационных, палатах интенсивной терапии, онкогематологических больных, больных СПИДом, с ожогами кожи, в палатах для грудных и новорожденных детей, а также во всех палатах отделений недоношенных и травмированных детей и других аналогичных лечебных учреждениях. Автоматическая система регулировки микроклимата должна обеспечивать требуемые параметры: температура воздуха - 15 - 25 °С, относительная влажность - 40 - 60%, подвижность - не более 0,15 м/сек.

Воздухообмен в палатах и отделениях должен быть организован так, чтобы максимально ограничить переток воздуха между палатными отделениями, между палатами, между смежными этажами. Количество приточного воздуха в палату должно составлять 80м /час на одного больного. Объем воздуха в палатах с минимальными размерами (7м - площадь, 3м -высота) составляет 21 м 3 на больного. Обеспечение достаточного нормируемого объема воздуха (80м в час) достигается 4-хкратной сменой воздуха в палате. Кратность воздухообмена - это сколько раз произойдет обмен воздуха в течение часа в помещении.

Архитектурно-планировочные решения стационара должны исключать перенос инфекций из палатных отделений и других помещений в операционный блок и другие помещения, требующие особой чистоты воздуха. Движение воздушных потоков должно быть обеспечено из операционных в прилегающие к ним помещения (предоперационные, наркозные и другие), а из этих помещений в коридор. В коридорах необходимо устройство вытяжной вентиляции. Это обеспечивается правильным соотношением притока и вытяжки.

Количество удаленного воздуха из нижней зоны операционных должно составлять 60%, из верхней зоны - 40%. Подача свежего воздуха осуществляется через верхнюю зону. При этом приток должен не менее чем на 20% преобладать над вытяжкой. Последнее требование распространяется на асептические палаты интенсивной терапии, послеоперационные палаты, реанимационные, родовые боксы, а также на палаты для недоношенных, грудных, новорожденных и травмированных детей. В то же время в палатах для туберкулезных больниц для взрослых больных вытяжка должна преобладать над притоком. Это предупреждает загрязнение коридора и других помещений палатной секции. В инфекционных, в том числе туберкулезных отделениях, вытяжная вентиляция с механическим побуждением устраивается из каждого бокса и полубокса и от каждой палатной секции отдельно, посредством индивидуальных каналов, исключающих перетекание воздуха по вертикали, они должны быть оборудованы устройствами обеззараживания воздуха.

^ Контроль за микроклиматом и химическим загрязнением воздушной

среды

Администрация лечебного учреждения организует этот вид контроля во всех помещениях периодически. Исправность вентиляционных систем и кратности воздухообмена проверяют в те же сроки.

Таблица 3

1-ая группа - помещения высокого риска - 1 раз в 3 месяца. 2-ая группа - помещения повышенного риска - 1 раз в 6 месяцев. 3-я группа - все остальные помещения и, прежде всего палаты - 1 раз в год.

Цель занятия:

1. Изучить влияние на организм человека факторов микроклимата (атмосферное давление, температура, относительная влажность, скорость движения воздуха) и освоить методы их определения.

2. Проанализировать полученные результаты и дать гигиеническое заключение о микроклимате учебного помещения.

Место проведения занятия: учебно-профильная лаборатория гигиены атмосферного воздуха.

Современный человек в силу объективных и субъективных причин большую часть времени (до 70%) суток проводит в закрытых помещениях (производственные помещения, жилище, лечебно-профилактические учреждения и т.д.). Внутренняя среда помещений оказывает непосредственное влияние на состояние здоровья людей.

Микроклимат – состояние окружающей среды в ограниченном пространстве (помещение), определяемое комплексом физических факторов (температура, влажность, атмосферное давление, скорость движения воздуха, лучистое тепло) и оказывающее влияние на тепловой обмен человека.

Влияние микроклимата на организм определяется характером отдачи тепла в окружающую среду. Отдача тепла человеком в комфортных условиях происходит за счет теплоизлучения (до 45%), теплопроведения – конвекции, кондукции (30%), испарения пота с поверхности кожи (25%). Наиболее часто неблагоприятное влияние микроклимата обусловлено повышением или понижением температуры, влажности или скорости движения воздуха.

Высокая температура воздуха в сочетании с повышенной влажностью и малой скоростью воздуха резко затрудняет отдачу тепла путем конвекции и испарения, в результате чего возможно перегревание организма. При низкой температуре, высокой влажности и скорости воздуха наблюдается противоположная картина – переохлаждение. При высокой или низкой температуре окружающих предметов, стен снижается или увеличивается отдача тепла путем излучения. Возрастание влажности, т.е. насыщенности воздуха помещения водяными парами, приводит к снижению отдачи тепла испарением.

Характеристика отдельных категорий работ

¨ категория Iа – работы с интенсивностью энерготрат до 120 ккал/ч (до 139 Вт), производимые сидя и сопровождающиеся незначительным физическим напряжением (ряд профессий на предприятиях точного приборо- и машиностроения, на часовом, швейном производствах, в сфере управления и т.п.)

¨ категория Iб – работы с интенсивностью энерготрат 121–150 ккал/ч (140-174 Вт), производимые сидя, стоя или связанные с ходьбой и сопровождающиеся некоторым физическим напряжением (ряд профессий в полиграфической промышленности, на предприятиях связи, контролеры, мастера в различных видах производства и т.п.)

¨ категория IIа – работы с интенсивностью энерготрат 151–200 ккал/ч (175-232 Вт), связанные с постоянной ходьбой, перемещением мелких (до 1 кг) изделий или предметов в положении стоя или сидя и требующие определенного физического напряжения (ряд профессий в механосборочных цехах машиностроительных предприятий, в прядильно-ткацком производстве и т.п.).

¨ категория IIб – работы с интенсивностью энерготрат 201–250 ккал/ч (233-290 Вт), связанные с ходьбой, перемещением и переноской тяжестей до 10 кг и сопровождающиеся умеренным физическим напряжением (ряд профессий в механизированных литейных, прокатных, кузнечных, термических, сварочных цехах машиностроительных и металлургических предприятий и т.п.).

¨ категория III – работы с интенсивностью энерготрат более 250 ккал/ч (более 290 Вт), связанные с постоянными передвижениями, перемещением и переноской значительных (свыше 10 кг) тяжестей и требующие больших физических усилий (ряд профессий в кузнечных цехах с ручной ковкой, литейных цехах с ручной набивкой и заливкой опок машиностроительных и металлургических предприятий и т.п.).

Врач должен уметь оценивать микроклимат помещения, прогнозировать возможные изменения теплового состояния и самочувствия лиц, подвергающихся воздействию неблагоприятного микроклимата, оценивать риск возникновения простудных заболеваний и обострения хронических воспалительных процессов.

Документы, регламентирующие параметры микроклимата помещений

При оценке параметров микроклимата используются следующие документы:

¨ СанПиН 2.2.4.548-96 «Гигиенические требования к микроклимату производственных помещений».

¨ СанПиН 2.1.2.1002-00 «Санитарно-эпидемиологические требования к жилым зданиям и помещениям».

Санитарные правила устанавливают гигиенические требования к показателям микроклимата рабочих мест производственных и других помещений с учетом интенсивности энерготрат работающих, времени выполнения работы и периодов года. Факторы микроклимата должны обеспечить сохранение теплового баланса человека с окружающей средой и поддержание оптимального или допустимого теплового состояния организма.

Оптимальные микроклиматические условия обеспечивают общее и локальное ощущение теплового комфорта в течение 8-часовой рабочей смены при минимальном напряжении механизмов терморегуляции, не вызывают отклонений в состоянии здоровья, создают предпосылки для высокого уровня работоспособности и являются предпочтительными на рабочих местах.

Перепады температуры воздуха по вертикали и горизонтали, а также изменения температуры воздуха в течение смены не должны превышать 2 о С и выходить за пределы величин, указанных в таблицах 1, 2.

Таблица 1

Параметры микроклимата в помещениях лечебно-профилактических учреждений

Таблица 2

Параметры микроклимата в жилых помещениях


Классификация типов микроклимата

Оптимальный – микроклимат, при котором человек соответствующего возраста и состояния здоровья находится в ощущении теплового комфорта.

Допустимый – микроклимат, который может вызвать преходящие и быстро нормализующиеся изменения функционального и теплового состояния человека.

Нагревающий – микроклимат, параметры которого превышают допустимые величины и могут быть причиной физиологических сдвигов, а иногда – причиной развития патологических состояний и заболеваний (перегревание, тепловой удар, и др.).

Охлаждающий – микроклимат, параметры которого ниже допустимых величин и могут вызвать переохлаждение, а также связанные с этим патологические состояния и заболевания.

ПОРЯДОК ВЫПОЛНЕНИЯ ИССЛЕДОВАНИЙ

Определение атмосферного давления

Барометрическое давление на поверхности Земли неравномерно и непостоянно. С поднятием на высоту наблюдается уменьшение давления, при опускании на глубину – повышение. Изменение давления в одном и том же месте зависит от различных атмосферных явлений и служит известным предвестником перемены погоды.

В обычных условиях колебания атмосферного давления (10–30 мм рт.ст.) здоровые люди переносят легко и незаметно. Однако некоторые пациенты (люди с незначительными и значительными нарушениями здоровья) оказываются весьма чувствительными даже к небольшим изменениям атмосферного давления – страдающие ревматическими заболеваниями, нервными болезнями, некоторыми инфекционными: обострение течения туберкулеза легких совпадало с резкими колебаниями барометрического давления.

В особых условиях жизни и трудовой деятельности отклонения от нормального атмосферного давления могут служить непосредственной причиной нарушения здоровья людей. Рассмотрим некоторые из них.

В горных районах, расположенных на высоте 2500–3000 м над уровнем моря и выше, наблюдается значительное уменьшение барометрического давления, сопровождающееся соответствующим уменьшением парциального давления кислорода. Это обстоятельство служит основной причиной возникновения горной (высотной) болезни, выражающейся в появлении одышки, сердцебиения, головокружения, тошноты, носового кровотечения, бледности кожных покровов и др. В основе клинических признаков горной болезни лежит гипоксия.

Повышенное атмосферное давление встречается в кессонах (фр. caisson букв . ящик) – специальных устройствах при водолазных работах. При несоблюдении необходимых профилактических мероприятий повышенное давление способно вызвать резкие физиологические сдвиги в организме, которые могут принять патологический характер с развитием кессонной болезни : при быстром переходе из атмосферы с повышенным давлением в атмосферу с обыкновенным давлением избыточное количество азота, растворенное в крови и тканевых жидкостях (главным образом в жировой ткани и в белом веществе мозга) не успевает выделиться через легкие и остается в них в виде пузырьков газа. Последние разносятся кровью по всему организму и могут обусловить газовые эмболии в различных частях тела. Клинические проявления кессонной болезни заключаются в мышечно-суставных и загрудинных болях, кожном зуде, кашле, вегетативно-сосудистых и мозговых нарушениях. Попадание газового эмбола в коронарные сосуды сердца может послужить причиной смерти.

Таким образом, измерения барометрического давления имеют большое практическое значение для предупреждения серьезных последствий этих изменений для здоровья людей.

Атмосферное давление измеряют с помощью ртутного барометра или барометра-анероида . Для непрерывной регистрации колебаний атмосферного давления пользуются барографом (рис.1). Атмосферное давление в среднем колеблется в пределах 760±20 мм рт.ст.

Рис 1. Барограф

Определение температуры воздуха

Температура воздуха оказывает прямое влияние на теплообмен человека. Колебания ее существенным образом отражаются на изменении условий теплоотдачи: высокая температура ограничивает возможность отдачи тепла телом, низкая повышает ее.

Совершенство терморегуляционных механизмов, деятельность которых осуществляется под постоянным и строгим контролем со стороны центральной нервной системы, позволяет человеку приспосабливаться к различным температурным условиям окружающей среды и кратковременно переносить значительные отклонения температуры воздуха от обычных оптимальных величин. Однако пределы терморегуляции отнюдь небезграничны и переход их вызывает нарушение теплового равновесия организма, что может причинить существенный вред здоровью.

Продолжительное пребывание в сильно нагретой атмосфере вызывает повышение температуры тела, ускорение пульса, ослабление компенсаторной способности сердечно-сосудистого аппарата, понижение деятельности желудочно-кишечного тракта вследствие нарушения условий теплоотдачи. В таких условиях внешней среды отмечается быстрая утомляемость и понижение умственной и физической работоспособности: снижается внимание, точность и координация движений, что может послужить причиной травматических повреждений при выполнении работы на производстве и др.

Низкая температура воздуха, увеличивая теплоотдачу, создает опасность переохлаждения организма. В результате создаются предпосылки к простудным заболеваниям, в основе которых лежит нейрорефлекторный механизм, вызывающий те или иные дистрофические изменения в тканях на почве нарушения баланса регуляции обменных процессов.

Умеренные колебания температуры можно рассматривать как фактор, обеспечивающий физиологически необходимую тренировку организма как единого целого и его терморегуляторных механизмов.

Наиболее благоприятной температурой воздуха в жилых помещениях для человека, находящегося в покое, является 20–22 о С в холодное время года и 22–25 о С в теплое время года при нормальной влажности и скорости движения воздуха.

Методика оценки температурного режима

Температуру воздуха измеряют с помощью ртутных и спиртовых термометров .

Для определения температурного режима помещения измеряют температуру воздуха по вертикали и горизонтали в трех точках: у наружной стены (в 10 см от нее), в центре и у внутренней стены (в 10 см от нее). Измерения проводят на уровне 0,1–1,5 м от пола. Отсчет показаний производят спустя 10 минут после того, как термометр установлен. Рассчитывается средняя арифметическая величина из шести полученных значений температур, которые заносят в протокол и анализируют перепады температуры по вертикали и горизонтали.

Среднюю температуру помещения по горизонтали вычисляют по трем значениям измерений в различных точках, проведенным на высоте 1,5 м.

Изменение температуры по горизонтали от наружной стены к внутренней не должно превышать 2 о С, а по вертикали – 2,5 о С на каждый метр высоты. Колебания температуры в течение суток не должны превышать 3 о С.

Определение влажности воздуха

Каждой температуре воздуха соответствует определенная степень насыщения его водяными парами: чем температура выше, тем больше степень насыщения, так как теплый воздух вмещает большее количество водяных паров, чем холодный воздух.

Для характеристики влажности применяют следующие понятия.

Абсолютная влажность – количество водяных паров в г в 1 м 3 воздуха.

Максимальная влажность – количество водяных паров в г, необходимое для полного насыщения 1 м 3 воздуха при той же температуре.

Относительная влажность – отношение абсолютной влажности к максимальной, выраженное в процентах.

Дефицит насыщения – разность между максимальной и абсолютной влажностью.

Точка росы – температура, при которой находящиеся в воздухе водяные пары насыщают пространство.

Наибольшее гигиеническое значение имеют относительная влажность и дефицит насыщения, которые дают ясное представление о степени насыщения воздуха водяными парами и скорости испарения влаги с поверхности тела при той или иной температуре.

Абсолютная влажность дает представление об абсолютном содержании водяных паров в воздухе, но не показывает степени его насыщения, поэтому и является менее показательной величиной, чем относительная влажность.

Влажность воздуха определяется приборами, которые называются психрометрами. Они бывают двух видов: психрометр Августа и психрометр Ассмана .

Для определения влажности воздуха психрометром Августа прибор следует установить на уровне 1,5 м от пола и провести наблюдения в течение 10–15 минут.

При использовании психрометра Августа абсолютная влажность вычисляется по формуле Реньо:

К = f a ( t – t 1) В , где

К – абсолютная влажность в мм. рт. ст.;

f – максимальная влажность при температуре влажного термометра (ее значение берут из таблицы 4);

а – психрометрический коэффициент (для комнатного воздуха 0,0011);

t – температура сухого термометра;

t 1 – температура влажного термометра;

В – атмосферное давление.

Вычисление относительной влажности производится по формуле:

R – относительная влажность в %;

К – абсолютная влажность;

F –максимальная влажность при температуре сухого термометра(берут из таблицы 4).

Пример: при исследовании обнаружилось, что температура сухого термометра составляет 18 о С, а влажного 13 о С; барометрическое давление – 762 мм рт.ст. По таблице 4 «Максимальная упругость водяных паров при разных температурах (мм рт.ст)» находим величину f – максимальное напряжение водяных паров при 13 о С, которое равняется 11,23 мм рт.ст., и подставляем найденные величины в формулу:

К = 11,23–0,0011 (18–13) 762 = 7,04 мм рт.ст.

Перевод абсолютной влажности в относительную произведем по формуле:

R = (K / F ) 100,

В нашем примере F при 18 о С по табл.4 равна 15,48 мм рт.ст., откуда:

R = (7,04 / 15,48) 100 = 45%

Для более точных замеров применяют аспирационный психрометр Ассмана (рис.2). Психрометр Ассмана имеет два ртутных термометра, заключенных в металлический футляр, предохраняющий прибор от воздействия теплового излучения. Один из термометров (нижняя его часть) покрыт материей и требует перед работой прибора увлажнения. Механическое аспирационное устройство – вентилятор, расположенный в верхней части психрометра, обеспечивает постоянную скорость движения воздуха около термометров, что позволяет проводить измерения при постоянных условиях.

Перед определением влажности воздуха материю на резервуаре одного из термометров («влажный») смачивают водой, затем часовой механизм вентилятора заводят на 3–4 мин. Снятие показаний термометров проводят в тот момент, когда температура влажного термометра станет минимальной.

Рис 2. Психрометр Ассмана

Расчет абсолютной влажности производится с помощью формулы Шпрунга:

(обозначения и формулу для определения относительной влажности см. выше).

Пример: Допустим, что после работы прибора в течение 3–4 минут температура сухого термометра равнялась 18 о С, а влажного 13 о С. Барометрическое давление на момент исследования составляло 762 мм рт.ст. По таблице 4 «Максимальная упругость водяных паров при разных температурах (мм рт.ст)» находим величину F – максимальная упругость водяных паров при 13 о С, которая равняется 11,23 мм рт.ст., и, подставляя найденную величину в формулу, получаем:

К = 11,23 – 0,5(18–13)(762/755) = 8,71 мм рт.ст.

Переведем найденную абсолютную влажность в относительную по формуле:

R = (К / F ) 100,

В нашем примере:

R = (8,71 / 15,48) 100 = 56,3%

Кроме расчетного определения относительной влажности по формулам, ее можно находить сразу по психрометрическим таблицам 5 и 6, используя данные, полученные с помощью психрометра Августа и Ассмана.

Относительная влажность воздуха в жилых и производственных помещениях допускается в пределах от 30 до 60%.

Определение скорости движения воздуха

Скорость движения воздуха оказывает определенное влияние на тепловой баланс организма человека. Кроме того, большая подвижность воздуха в больничных помещениях способствует поднятию в воздух осевшей пыли, ее перемещению и вместе с микроорганизмами создает условия для возможного заражения людей.

Для определения больших скоростей воздуха в открытой атмосфере используют анемометры (рис.3). Ими измеряют скорость движения воздуха в пределах от 1 до 50 м/с.

Рис 3. Анемометр

Определение малых скоростей движения воздуха от 0,1 до 1,5 м/с осуществляется с помощью кататермометра (от греч. kata – движение сверху вниз) – особого спиртового термометра (рис.4). Этот прибор позволяет определить величину потери тепла физическим телом в зависимости от температуры и скорости движения окружающего воздуха.

При этом сначала определяют охлаждающую способность воздуха. Для этого погружают прибор в горячую воду, пока спирт не поднимется до половины верхнего расширения капилляра. Затем его вытирают насухо и определяют время в секундах снижения уровня спирта с 38 о С до 35 о С.


Рис 4. Кататермометр

Вычисление величины охлаждающей способности воздуха в милликалориях с 1 см 2 за секунду (Н ) проводится по формуле:

F – факторприбора – постоянная величина, показывающая количество тепла, теряемое с 1 см 2 поверхности кататермометра за время опускания столбика спирта с 38 о С до 35 о С (обозначен на тыльной стороне прибора);

а – число секунд, в течение которых столбик спирта опускается с 38 о С до 35 о С.

Скоростьдвижения воздуха в м/сек. (V ) определяется по формуле:

, где

H – охлаждающая способностьвоздуха.

Q – разность между средней температурой тела 36,5 о С и температурой окружающего воздуха;

0,2 и 0,4 – эмпирические коэффициенты.

Скорость движения воздуха можно определить также по таблице 7.

Нормальной скоростью движения воздуха в жилых и учебных помещениях считают скорость 0,2–0,4 м/с. Скорость движения воздуха в палатах лечебно-профилактических учреждений должна составлять от 0,1 до 0,2 м/с.


Таблица 3

Сводные данные проведенных исследований

Гигиеническое заключение. На основании полученных результатов оценивают соответствие факторов микроклимата оптимальным условиям. В случае отклонения от нормативов вносят рекомендации по их улучшению.

Контрольные вопросы:

1. Микроклимат. Понятие, факторы, его определяющие.

2. Метеозависимые заболевания.

3. Влияние пониженного и повышенного атмосферного давления на организм человека.

4. Влияние низкой и высокой температуры воздуха на организм человека.

5. Влажность воздуха. Гигиеническое значение.

6. Оптимальные значения температуры, относительной влажности и скорости движения воздуха в лечебно-профилактических учреждениях. Документы, их регламентирующие.

7. Приборы для оценки микроклимата помещений.

8. Преимущества аспирационного психрометра Ассмана перед психрометром Августа.

9. Приборы для непрерывной, длительной регистрации температуры, влажности и атмосферного давления воздуха.


Таблица 4

Максимальная упругость водяных паров при разных температурах (мм рт.ст.)


Таблица 5

Определение относительной влажности по показаниям психрометра Августа при скорости движения воздуха в помещении 0,2 м/сек


Таблица 6

Определение относительной влажности по показаниям психрометра Ассмана


Таблица 7

Скорости движения воздуха менее 1 м/с (с учетом поправок на температуру), H=F/a

Микроклимат - комплекс физических факторов внутренней среды помещений, оказывающий влияние на тепловой обмен организма и здоровье человека. К микроклиматическим показателям относятся температура, влажность и скорость движения воздуха, температура поверхностей ограждающих конструкций, предметов, оборудования, а также некоторые их производные (градиент температуры воздуха по вертикали и горизонтали помещения, интенсивность теплового излучения от внутренних поверхностей).

Воздействие комплекса микроклиматических факторов отражается на теплоощущении человека и обусловливает особенности физиологических реакций организма. Температурные воздействия, выходящие за пределы нейтральных колебаний, вызывают изменения тонуса мышц, периферических сосудов, деятельности потовых желез, теплопродукции. При этом постоянство теплового баланса достигается за счет значительного напряжения терморегуляции, что отрицательно сказывается на самочувствии, работоспособности человека, его состоянии здоровья.

Тепловое состояние, при котором напряжение системы терморегуляции незначительно, определяется как тепловой комфорт. Он обеспечивается в диапазоне оптимальных микроклиматических условий, в пределах которого отмечается наименьшее напряжение терморегуляции и комфортное теплоощущение. Разработаны оптимальные нормы М., которые должны обеспечивать в лечебно-профилактических и детских учреждениях, жилых, административных зданиях, а также на промышленных объектах, где оптимальные условия необходимы по технологическим требованиям. Санитарные нормы оптимального М. дифференцированы для холодного и теплого периодов года (табл. 1 ).

Таблица 1

Оптимальные нормы температуры, относительной влажности и скорости движения воздуха в жилых, общественных, административных помещениях

Показатели

Период года

холодный и переходный

Температура

Относительная влажность, %

Скорость движения воздуха, м/с

Не более 0,25

Не более 0,1-0,15

Для помещений лечебно-профилактических учреждений нормируется расчетная температура воздуха, при этом для помещений различного назначения (палат, кабинетов и процедурных) эти нормы дифференцируются. Например, в палатах для взрослых больных, помещениях для матерей в детских отделениях, палатах для туберкулезных больных температура воздуха должна быть 20°; в палатах для овых больных, послеродовых палатах - 22°; в палатах для недоношенных, травмированных, грудных и новорожденных детей - 25°.

В тех случаях, когда по ряду технических и других причин оптимальные нормы М. не могут быть обеспечены, ориентируются на допустимые нормы (табл. 2 ).

Таблица 2

Допустимые нормы температуры, относительной влажности и скорости движения воздуха в жилых, общественных, административно-бытовых помещениях

Показатели

Период года

холодный и переходный

Температура

Не более 28°

для районов с расчетной температурой воздуха 25°

Не более 33°

Относительная влажность, %

в районах с расчетной относительной влажностью воздуха более 75%

Скорость движения воздуха, м/с

Не более 0,5

Не более 0,2

Допустимые санитарные нормы М. в жилых и общественных зданиях обеспечиваются с помощью соответствующего планировочного оборудования, теплозащитных и влагозащитных свойств ограждающих конструкций.

При проведении текущего санитарного надзора в жилых, общественных, административных и лечебно-профилактических учреждениях температуру воздуха измеряют на уровне 1,5 и 0,05 м от пола в центре помещения и в наружном углу на расстоянии 0,5 м от стен; относительную влажность воздуха определяют в центре помещения на высоте 1,5 м от пола; скорость движения воздуха устанавливают на уровне 1,5 и 0,05 м от пола в центре помещения и на расстоянии 1,0 м от окна; температуру на поверхности ограждающих конструкций и отопительных приборов измеряют в 2-3 точках поверхности.

При проведении санитарного надзора в многоэтажных зданиях измерения производят в помещениях, расположенных на разных этажах, в торцовых и рядовых секциях с односторонней и двусторонней ориентацией квартир при температуре наружного воздуха, близкой к расчетной для данных климатических условий.

Градиент температур воздуха по высоте помещения и по горизонтали не должен превышать 2°. Температура на поверхности стен может быть ниже температуры воздуха в помещении не более чем на 6°, пола - на 2°, разница между температурой воздуха и температурой оконного стекла в холодный период года не должна превышать в среднем 10-12°, а тепловое воздействие на поверхность тела человека потока инфракрасного излучения от нагретых отопительных конструкций-0,1 кал/см 2 × мин.

Производственный микроклимат . На М. производственных помещений существенное влияние оказывает технологический процесс, на М. рабочих мест, расположенных на открытой территории, - климат и погода местности.

На ряде производств, перечень которых устанавливается отраслевыми документами, согласованными с органами государственного санитарного надзора, предусматривается оптимальный производственный микроклимат. В кабинах, на пультах и постах управления технологическими процессами, в залах вычислительной техники, а также в других помещениях, в которых выполняется работа операторского типа, должны обеспечиваться оптимальные величины М.: температура воздуха 22-24°, влажность - 40-60%, скорость движения воздуха - не более 0,1 м/с вне зависимости от периода года. Оптимальные нормы достигаются в основном за счет применения систем кондиционирования воздуха. Однако технологические требования некоторых производств (прядильных и ткацких цехов текстильных фабрик, отдельных цехов пищевой промышленности), а также технические причины и экономические возможности ряда отраслей промышленности (мартеновские, доменные, литейные, кузнечные цехи металлургической промышленности, предприятия тяжелого машиностроения, стекольного производства и пищевой промышленности) не позволяют обеспечить оптимальные нормы производственного микроклимата. В этих случаях на постоянных и непостоянных рабочих местах, в соответствии с ГОСТ устанавливаются допустимые нормы М.

В зависимости от характера поступления тепла и превалирования того или иного показателя М. выделяют цеха преимущественно с конвекционным (например, продуктовые цеха сахарных заводов, машинные залы электростанций, термические цеха, глубокие шахты) или радиационным нагревающим (например, металлургическое, стекольное производство) микроклиматом. Конвекционный нагревающий М. характеризуется высокой температурой воздуха, иногда сочетающейся с высокой его влажностью (красильные отделения текстильных фабрик, теплицы, агломерационные цехи), увеличивающей степень перегревания организма человека (см. Перегревание организма ). Радиационный нагревающий М. характеризуется преобладанием лучистого тепла.

При несоблюдении мер профилактики у лиц, работающих длительное время в нагревающем М., могут наблюдаться дистрофические изменения миокарда, астенический синдром, снижается иммунологическая реактивность организма, что способствует повышению заболеваемости рабочих острыми респираторными заболеваниями, ангиной, бронхитом, ом, ми. При перегревании организма усиливается неблагоприятное действие химических веществ, пыли, шума, быстрее наступает усталость.

Таблица 3

Оптимальные величины температуры и скорости движения воздуха в рабочей зоне производства иных помещений в зависимости от категории работ и периодов года

Энергозатраты, Вт

Периоды года

холодный

холодный

Температура (°C)

Скорость движения воздуха, (м/с )

легкая, Ia

легкая, Iб

средней тяжести, IIa

средней тяжести, IIб

тяжелая, III

Охлаждающий М. в производственных помещениях может быть преимущественно конвекционным (низкая температура воздуха, например, в отдельных подготовительных цехах пищевой промышленности), преимущественно радиационным (низкая температура ограждений в холодильных камерах) и смешанным. Охлаждение способствует возникновению респираторных заболеваний, обострению заболеваний сердечно-сосудистой системы. При охлаждении ухудшается координация движений и способность выполнять точные операции, что ведет как к снижению работоспособности, так и увеличению вероятности производственных травм. При работе на открытой территории в зимний период появляется возможность отморожений , затрудняется использование средств индивидуальной защиты (обмерзание респираторов при дыхании).

Санитарные нормы предусматривают обеспечение оптимальных или допустимых параметров М. производственных помещений с учетом 5 категорий работ, характеризующихся различным уровнем энерготрат (табл. 3 ). Нормы регламентируют температуру, влажность, скорость движения воздуха и интенсивность теплового облучения работающих (с учетом площади облучаемой поверхности тела), температуру внутренних поверхностей, ограждающих рабочую зону конструкций (стен, пола, потолка) или устройств (например, экранов), температуру наружных поверхностей технологического оборудования, перепады температуры воздуха по высоте и горизонтали рабочей зоны, ее изменения в течение смены, а также предусматривают необходимые мероприятия по защите рабочих мест от радиационного охлаждения. исходящего от поверхности стекла оконных проемов (в холодный период года) и нагревания от попадания прямых солнечных лучей (в теплый период).

Профилактика перегревания работающих в нагревающем М. осуществляется за счет уменьшения внешней тепловой нагрузки путем автоматизации технологических процессов, дистанционного управления, использования коллективных и индивидуальных средств защиты (теплопоглощающие и теплоотражающие экраны, воздушные души, водяные завесы, системы радиационного охлаждения), регламентации времени непрерывного пребывания на рабочем месте и в зоне отдыха с оптимальными микроклиматическими условиями, организации питьевого режима.

Для предупреждения перегревания работающих в летний период на открытой территории используется спецодежда из воздухо- и влагопроницаемых тканей, материалов с высокими отражающими свойствами, а также организуется отдых в санитарно-бытовых помещениях с оптимальным М., который может быть обеспечен путем использования кондиционеров или систем радиационного охлаждения. Важное значение имеют мероприятия, направленные на повышение резистентности организма к тепловому воздействию, включая и адаптацию к этому фактору.

При работе в охлаждающем М. профилактические мероприятия предусматривают использование в первую очередь спецодежды (см. Одежда ), обуви (см. Обувь ), головных уборов и рукавиц, теплозащитные свойства которых должны соответствовать метеорологическим условиям, тяжести выполняемой работы. Регламентируются время непрерывного пребывания на холоде и перерывы на отдых в санитарно-бытовых помещениях, которые входят в рабочее время. Эти помещения дополнительно оборудуются устройствами для обогревания рук и ног, а также приспособлениями для просушивания спецодежды, обуви, рукавиц. Для предупреждения обмерзания респираторов применяются устройства для подогревания вдыхаемого воздуха.

Библиогр.: Гигиеническое нормирование факторов производственной среды и трудового процесса, под ред. Н.Ф. Измерена и А.А. Каспарова, с. 71, М., 1986; Губернский Ю. Д. и Кореневская Е.И. Гигиенические основы кондиционирования микроклимата жилых и общественных зданий, М., 1978, библиогр.; Руководство по гигиене труда, под ред. Н.Ф. Измерова, т. 1, с 91, М., 1987, Шахбазян Г.X. и Шлейфман Ф.М. Гигиена производственного микроклимата, Киев, 1977, библиогр.

Прочитайте:
  1. Анатомия застенных желез тонкого отдела кишечника. Топография, назначение, видовые особенности у домашних животных и птиц. Иннервация, кровоснабжение, отток лимфы.
  2. Анатомия изучает строение животных в 3 основных аспектах.
  3. б) История развития основных направлений медицинской науки и здравоохранения
  4. В промышленном масштабе используют 5 основных методов опреснения воды: дистилляции, вымораживания, обратного осмоса, электродиализа, ионного обмена.
  5. Вентиляция помещений. Кратность воздухообмена в детских коллективах.
  6. Воздухообмен, микроклимат, освещение основных помещений школ.
  7. Вопрос 2. Пирамидная и экстрапирамидная системы, их значение, центры и основные проводящие пути.

Сколько воздуха нужно человеку для нормального существования?

Вентиляция помещений обеспечивает своевременное удаление избытка углекислого газа, тепла, влаги, пыли, вредных веществ, в общем, результатов различных бытовых процессов и пребывания в помещении людей.

Виды вентиляции.

1) Естественная. Заключается в естественном воздухообмене между по­
мещением и внешней средой за счет разницы температур внутреннего и на­
ружного воздуха, ветра и тд.

Естественная вентиляция может быть:

Неорганизованная (путем фильтрации воздуха через щели)

Организованная (через открытые форточки, окна и тд) - проветри­вание.

2) Искусственная.

Приточная - искусственная подача наружного воздуха в поме­щение.

Вытяжная - искусственная вытяжка воздуха из помещения.

Приточно-вытяжная - искусственный приток и вытяжка. По­ступление воздуха происходит через приточную камеру, где он обогревается, фильтруется и удаляется через вентиляцию.

Общий принцип вентиляции заключается в том, что

В грязных помещениях должна преобладать вытяжка (чтобы исключить самопроизвольное поступление грязного воздуха в со­седние помещения)

В чистых помещениях должен преобладать приток (чтобы в них не поступал воздух из грязных помещений).

Как определить, сколько чистого воздуха должно поступать в помещение в час на одного человека, чтобы вентиляция была достаточной?

Количество воздуха, которое необходимо подать в помещение на одного человека в час называется объемом вентиляции.

Он может быть определен по влажности, температуре, но точнее всего определяется по углекислому газу.

Методика:

В воздухе содержится 0.4 %<■ углекислого газа. Как уже упоминалось, для помещений, требующих высокого уровня чистоты (палаты, операционные), допускается содержание углекислого газа в воздухе не более 0.7 /~ в обыч­ных помещениях допускается концентрация до 1 Л«.

При пребывании в помещении людей количество углекислого газа уве­личивается. Один человек вьщеляет приблизительно 22.6 л углекислого газа в час. Сколько же нужно подать воздуха на одного человека в час, чтобы эти 22.6 литра разбавить так, чтоб концентрация углекислого газа в воздухе по­мещения не превысила бы 0.7 %° или 1 /<.. ?

Каждый литр подаваемого в помещение воздуха содержит 0.4 %° углеки­слого газа, то есть каждый литр этого воздуха содержит 0.4 мл углекислого газа и таким образом может еще "принять" 0.3 мл (0.7 - 0.4) для чистых по­мещений (до 0.7 мл в литре или 0.7 /~) и 0.6 мл (1 - 0.4) для обычных по­мещений (до 1 мл в литре или 1 /~).

Так как каждый час 1 человек вьщеляет 22.6 л (22600 мл) углекислого газа, а каждый литр подаваемого воздуха может "принять" указанное выше число мл углекислого газа, то количество литров воздуха, которое необходи­мо подать в помещение на 1 человека в час составляет

Для чистых помещений (палаты, операционные) - 22600 / 0.3 = 75000 л = 75 м 3 . То есть, 75 м 3 воздуха на каждого человека в час долж­но поступить в помещение для того чтобы концентрация углекислого газа в нем не превысила 0.7%*

Для обычных помещений - 22600 / 0.6 = 37000 л = 37 м 3 . То есть, 37 м воздуха на каждого человека в час должно поступить в поме­щение, для того чтобы концентрация углекислого газа в нем не превысила.

Если в помещении находится не один человек, то указанные цифры ум­ножаются на количество человек.

Выше было подробно объяснено, как находится величина вентиляцион­ного объема прямо на конкретных цифрах, вообще же нетрудно догадаться, что общая формула выглядит следующим образом:

Ь = (К * М) / (Р - Р0 = (22.6 л * 14) / (Р - 0.4%.)

Ь - объем вентиляции (м)

К - количество углекислого газа, выдыхаемого человеком за час (л)

N - число людей в помещении

Р - максимально допустимое содержание углекислоты в помещении (/«)

По данной формуле мы рассчитываем необходимый объем подаваемого воздуха (необходимый объем вентиляции). Для того, чтобы рассчитать реаль­ный объем воздуха, который подается в помещение за час (реальный объем вентиляции) нужно в формулу вместо Р (ПДК углекислого газа - 1/Ц 0.7 У«) подставить реальную концентрацию углекислого газа в данном помеще­нии в промилях:

^ реальный-

- (22.6 л * 14) / ([С0 2 ] факт - 0.4 /~)

Ь реальный - реальный объем вентиляции

[ССЫфакт - фактическое содержание углекислого газа в помещении

Для определения" концентрации углекислого газа используют метод Суб-ботина-Нагорского (основан на снижении титра едкого Ва, наиболее точен), метод Реберга (также использование едкого Ва, экспресс-метод), метод Про­хорова, фотоколориметрический метод и др.

Другой количественной характеристикой вентиляции, непосредственно связанной с объемом вентиляции, является кратность вентиляции. Крат­ность вентиляции показывает сколько раз в час воздух в помещении полно­стью обменивается.

Кратность вентиляции - Объем попаваемого (извлекаемого 4) в чяг. возгсух я

Объем помещения.

Соответственно, чтобы рассчитать для данного помещения необходимую кратность вентиляции нужно в эту формулу в числителе подставить необ­ходимый объем вентиляции. А для того, чтобы узнать, какова реальная кратность вентиляции в помещении в формулу подставляют реальный объем вентиляции (расчет см. выше).

Кратность вентиляции может рассчитываться по притоку (кратность по притоку), тогда в формулу подставляется объем подаваемого в час воздуха и значение указывается со знаком (+), а может рассчитываться по вытяжке (кратность по вытяжке), тогда в формулу подставляется объем извлекаемого в час воздуха и значение указывается со знаком (-).

Например, если в операционной кратность вентиляции обозначается как +10, -8, то это означает, что каждый час в это помещение поступает десяти­кратный, а извлекается восьмикратный объем воздуха по отношению к объ­ему помещения.

Существует такое понятие как воздушный куб.

Воздушный куб - это необходимый на одного человека объем возду­ха.

Норма воздушного куба составляет 25-27 м. Но как было рассчитано выше на одного человека в час требуется подавать объем воздуха 37 м, то есть при данной норме воздушного куба (данном объеме помещения,) необхо­димая кратность воздухообмена составляет 1.5 (37 м / 25 м = 1.5).

Микроклимат больничных помещений.

Температурный режим.

Изменения температуры не должны превышать:

В направлении от внутренней до наружной стены - 2°С

В вертикальном направлении - 2.5°С на каждый метр высоты

В течение суток при центральном отоплении - 3°С

Относительная влажность воздуха должна составлять 30-60 %

Скорость движения воздуха - 0.2-0.4 м/с

6. Проблема внутрибольничных инфекций; мероприятия неспецифической профилактики, цель и содержание.

ВНУТРИБОЛЬНИЧНЫЕ ИНФЕКЦИИ - любое клинически распознаваемое, вызванное микроорганизмами заболевание, возникающее у больных в результате пребывания в лечебно-профилактической организации или обращения в нее за медицинской помощью, а также возникшее у медицинского персонала в результате его профессиональной деятельности (Всемирная организация здравоохранения).

Неспецифическая профилактика.

Архитектурно-планировочные мероприятия

· Строительство и реконструкция стационарных и амбулаторно-поликлинических учреждений с соблюдением принципа рациональных архитектурно-планировочных решений:

· изоляция секций, палат, операционных блоков и т.д.;

· соблюдение и разделение потоков больных, персонала, “чистых” и “грязных” потоков;

· рациональное размещение отделений по этажам;

· правильное зонирование территории

Санитарно-технические мероприятия

· эффективная искусственная и естественная вентиляция;

· создание нормативных условий водоснабжения и водоотведения;

· правильная воздухоподача;

· кондиционирование, применение ламинарных установок;

· создание регламентированных параметров микроклимата, освещения, шумового режима;

· соблюдение правил накопления, обезвреживания и удаления отходов лечебных учреждений.

Санитарно-противоэпидемические мероприятия

· эпидемиологический надзор за ВБИ, включая анализ заболеваемости ВБИ;

· контроль за санитарно-противоэпидемическим режимом в лечебных учреждениях;

· введение службы госпитальных эпидемиологов;

· лабораторный контроль состояния противоэпидемического режима в ЛПУ;

· выявление бактерионосителей среди больных и персонала;

· соблюдение норм размещения больных;

· осмотр и допуск персонала к работе;

· рациональное применение антимикробных препаратов, прежде всего – антибиотиков;

· обучение и переподготовка персонала по вопросам режима в ЛПУ и профилактики ВБИ;

· санитарно-просветительная работа среди больных.

Дезинфекционно-стерилизационные мероприятия.

· применение химических дезинфектантов;

· применение физических методов дезинфекции;

· предстерилизационная очистка инструментария и медицинской аппаратуры;

· ультрафиолетовое бактерицидное облучение;

· камерная дезинфекция;

· паровая, суховоздушная, химическая, газовая, лучевая стерилизация;

· проведение дезинсекции и дератизации.

Весьма большое значение как лечебный фактор имеют микроклиматические условия, причем в зимний и переходный периоды года температура в палатах должна находиться в пределах 18 — 21 °С, а летом верхний предел зоны комфорта не должен превышать 24 °С. Для этого находящиеся там нагревательные приборы должны иметь устройства для их регулирования. В частности, уже разработаны специальные приспособления к обычным радиаторам, автоматически поддерживающие заданную температуру воздуха.

Для предотвращения же перегревания в жаркие летние месяцы единственным радикальным средством является установка кондиционеров, которые в первую очередь следует оборудовать в палатах для больных, страдающих тяжелыми расстройствами сердечнососудистой системы.

В качестве паллиативных мероприятий целесообразно использовать правильную ориентацию окон по странам света, окраску наружных стен в белый цвет, вертикальное озеленение, устройство ставень, жалюзей и штор, применение специальных видов теплозадерживающего стекла, повышение скорости движения воздуха с помощью комнатных вентиляторов и т. д.

Учитывая благотворное биологическое и психофизиологическое влияние солнечной радиации, необходимо обеспечивать достаточную инсоляцию палатных помещений, причем наилучшей их ориентацией считается южная. Установлено, что даже ослабленное ультрафиолетовое облучение, проникшее через обыкновенное стекло, может оказывать губительное действие на патогенную флору. Вместе с тем проникающие в палату лучи солнца поднимают в какой-то степени настроение больных и улучшают их самочувствие.

Наконец, должная ориентация окон является одним из обязательных условий достаточности естественного освещения, показатели которого для палатных помещений равняются по световому коэффициенту 1:5 — 1:6 и КЭО не менее 1,0.

Специфическими особенностями отличаются секции для капельных и кишечных инфекций, где должны оборудоваться боксы, полубоксы и боксированные палаты. Из них первые имеют наружный вход с тамбуром, ванну, унитаз, палату на 1 койку, шлюз для персонала и передаточный шкафчик для передачи посуды и пищи. Полубоксы обычно достоят из двух отделений, объединенных общим ванно-душевым помещением.

Что касается боксированных палат, то они имеют только стеклянные перегородки между койками, в известной мере предохраняющие от заражения.

«Гигиена», В.А.Покровский

Смотрите также: